Skip to main content

2015 | OriginalPaper | Buchkapitel

Implementation of a Modified Moving Least Squares Approximation for Predicting Soft Tissue Deformation Using a Meshless Method

verfasst von : Habibullah Amin Chowdhury, Grand Roman Joldes, Adam Wittek, Barry Doyle, Elena Pasternak, Karol Miller

Erschienen in: Computational Biomechanics for Medicine

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In applications where the organic soft tissue undergoes large deformations, traditional finite element methods can fail due to element distortion. In this context, meshless methods, which require no mesh for defining the interpolation field, can offer stable solutions. In meshless method, the moving least square (MLS) shape functions have been widely used for approximating the unknown field functions using the scattered field nodes. However, the classical MLS places strict requirements on the nodal distributions inside the support domain in order to maintain the non-singularity of the moment matrix. These limitations are preventing the practical use of higher order polynomial basis in classical MLS for randomly distributed nodes despite their capability for more accurate approximation of complex deformation fields. A modified moving least squares (MMLS) approximation has been recently developed by ISML. This paper assesses the interpolation capabilities of the MMLS. The proposed meshless method based on MMLS is used for computing the extension of a soft tissue sample and for a brain deformation simulation in 2D. The results are compared with the commercial finite element software ABAQUS. The simulation results demonstrate the superior performance of the MMLS over classical MLS with linear basis functions in terms of accuracy of the solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16(8), 437-452 (2000). doi:10.1007/Pl00007215 Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16(8), 437-452 (2000). doi:10.​1007/​Pl00007215
2.
Zurück zum Zitat Warfield, S.K., Talos, F., Tei, A., Bharatha, A., Nabavi, A., Ferrant, M., Black, P.M.L., Jolesz, F.A., Kikinis, R.: Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided neurosurgery. Comput. Vis. Sci. 5(1), 3–11 (2002). doi:10.1007/s00791-002-0083-7 CrossRefMATH Warfield, S.K., Talos, F., Tei, A., Bharatha, A., Nabavi, A., Ferrant, M., Black, P.M.L., Jolesz, F.A., Kikinis, R.: Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided neurosurgery. Comput. Vis. Sci. 5(1), 3–11 (2002). doi:10.​1007/​s00791-002-0083-7 CrossRefMATH
4.
Zurück zum Zitat Liu, G-R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton, Florida, USA (2010) Liu, G-R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton, Florida, USA (2010)
5.
Zurück zum Zitat Wittek, A., Joldes, G.R., Miller, K.: Algorithms for computational biomechanics of the brain. In Miller, K. (Ed), Biomechanics of the Brain, pp. 189-219, Springer, New York (2011) Wittek, A., Joldes, G.R., Miller, K.: Algorithms for computational biomechanics of the brain. In Miller, K. (Ed), Biomechanics of the Brain, pp. 189-219, Springer, New York (2011)
6.
Zurück zum Zitat Miller, K., Wittek, A., Joldes, G.R.: Biomechanical Modeling of the Brain for Computer-Assisted Neurosurgery. In Miller, K. (Ed), Biomechanics of the Brain, pp. 111-136, Springer, New York (2011) Miller, K., Wittek, A., Joldes, G.R.: Biomechanical Modeling of the Brain for Computer-Assisted Neurosurgery. In Miller, K. (Ed), Biomechanics of the Brain, pp. 111-136, Springer, New York (2011)
7.
8.
Zurück zum Zitat Shepard, D.: A two-dimensional interpolation for irregularly-spaced data. Paper presented at the 23rd ACM national conference (1968) Shepard, D.: A two-dimensional interpolation for irregularly-spaced data. Paper presented at the 23rd ACM national conference (1968)
10.
Zurück zum Zitat Lancaster, P., Salkauskas, K.: Surfaces generated by moving least-squares methods. Math. Comput. 37(155), 141–158 (1981). doi:10.2307/2007507 Lancaster, P., Salkauskas, K.: Surfaces generated by moving least-squares methods. Math. Comput. 37(155), 141–158 (1981). doi:10.​2307/​2007507
11.
Zurück zum Zitat Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004) Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004)
12.
Zurück zum Zitat Joldes, G.R., Chowdhury, H.A., Wittek, A., Doyle, B., Miller, K.: Modified Moving Least Squares with Polynomial Bases for Scattered Data Approximation. UWA, Perth, WA, Report # ISML/02/2014: 17 pages. (school.mech.uwa.edu.au/ISML/index.php/Reports) (2014) Joldes, G.R., Chowdhury, H.A., Wittek, A., Doyle, B., Miller, K.: Modified Moving Least Squares with Polynomial Bases for Scattered Data Approximation. UWA, Perth, WA, Report # ISML/02/2014: 17 pages. (school.mech.uwa.edu.au/ISML/index.php/Reports) (2014)
13.
Zurück zum Zitat Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publishing Co., Inc., Singapore (2007) Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publishing Co., Inc., Singapore (2007)
14.
Zurück zum Zitat Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods. Eng. 23(2), 121–134 (2006). doi:10.1002/cnm.887 CrossRefMathSciNet Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods. Eng. 23(2), 121–134 (2006). doi:10.​1002/​cnm.​887 CrossRefMathSciNet
15.
Zurück zum Zitat Joldes, G.R., Wittek, A., Couton, M., Warfield, S.K., Miller, K.: Real-Time Prediction of Brain Shift Using Nonlinear Finite Element Algorithms. Medical Image Computing and Computer-Assisted Intervention – Miccai 2009, Pt Ii, Proceedings, vol. 5762, pp. 300–307 (2009) Joldes, G.R., Wittek, A., Couton, M., Warfield, S.K., Miller, K.: Real-Time Prediction of Brain Shift Using Nonlinear Finite Element Algorithms. Medical Image Computing and Computer-Assisted Intervention – Miccai 2009, Pt Ii, Proceedings, vol. 5762, pp. 300–307 (2009)
16.
Zurück zum Zitat Joldes, G.R., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic relaxation. Comput. Methods. Appl. Mech. Eng. 198(41–44), 3313–3320 (2009). doi:10.1016/j.cma.2009.06.012 Joldes, G.R., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic relaxation. Comput. Methods. Appl. Mech. Eng. 198(41–44), 3313–3320 (2009). doi:10.​1016/​j.​cma.​2009.​06.​012
17.
Zurück zum Zitat Joldes, G.R., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image. Anal. 13(6), 912–919 (2009). doi:10.1016/j.media.2008.12.001 Joldes, G.R., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image. Anal. 13(6), 912–919 (2009). doi:10.​1016/​j.​media.​2008.​12.​001
18.
19.
Zurück zum Zitat Wittek, A., Joldes, G., Couton, M., Warfield, S.K., Miller, K. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; application to non-rigid neuroimage registration. Prog. Biophys. Mol. Biol. 103(2–3), 292–303 (2010). doi:10.1016/j.pbiomolbio.2010.09.001 Wittek, A., Joldes, G., Couton, M., Warfield, S.K., Miller, K. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; application to non-rigid neuroimage registration. Prog. Biophys. Mol. Biol. 103(2–3), 292–303 (2010). doi:10.​1016/​j.​pbiomolbio.​2010.​09.​001
20.
Zurück zum Zitat Horton, A., Wittek, A., Joldes, G.R., Miller, K.: A meshless total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26(8), 977–998 (2010). doi:10.1002/cnm.1374 CrossRefMATH Horton, A., Wittek, A., Joldes, G.R., Miller, K.: A meshless total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26(8), 977–998 (2010). doi:10.​1002/​cnm.​1374 CrossRefMATH
21.
Zurück zum Zitat Most, T., Bucher, C.: A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions. Struct. Eng. Mech. 21(3), 315–332 (2005)CrossRef Most, T., Bucher, C.: A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions. Struct. Eng. Mech. 21(3), 315–332 (2005)CrossRef
22.
Zurück zum Zitat Joldes, G.R, Wittek, A., Miller, K.: An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. Int. J. Numer. Methods. Biomed. Eng. 27(2), 173–185 (2011). doi:10.1002/cnm.1407 Joldes, G.R, Wittek, A., Miller, K.: An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. Int. J. Numer. Methods. Biomed. Eng. 27(2), 173–185 (2011). doi:10.​1002/​cnm.​1407
23.
Zurück zum Zitat Miller, K., Chinzei, K., Orssengo, G., Bednarz, P.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33(11), 1369–1376 (2000). doi:10.1016/S0021-9290(00)00120-2 Miller, K., Chinzei, K., Orssengo, G., Bednarz, P.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33(11), 1369–1376 (2000). doi:10.​1016/​S0021-9290(00)00120-2
24.
Zurück zum Zitat Zhang, J.Y., Joldes, G.R., Wittek, A., Miller, K.: Patient-specific computational biomechanics of the brain without segmentation and meshing. Int. J. Numer. Methods. Biomed. Eng. 29(2), 293–308 (2013). doi:10.1002/cnm.2507 CrossRefMathSciNet Zhang, J.Y., Joldes, G.R., Wittek, A., Miller, K.: Patient-specific computational biomechanics of the brain without segmentation and meshing. Int. J. Numer. Methods. Biomed. Eng. 29(2), 293–308 (2013). doi:10.​1002/​cnm.​2507 CrossRefMathSciNet
25.
Zurück zum Zitat Miller, K.: Biomechanics of the Brain. Springer, New York (2011) Miller, K.: Biomechanics of the Brain. Springer, New York (2011)
Metadaten
Titel
Implementation of a Modified Moving Least Squares Approximation for Predicting Soft Tissue Deformation Using a Meshless Method
verfasst von
Habibullah Amin Chowdhury
Grand Roman Joldes
Adam Wittek
Barry Doyle
Elena Pasternak
Karol Miller
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15503-6_6

Neuer Inhalt