Skip to main content
Erschienen in: Optical and Quantum Electronics 11/2018

01.11.2018

Implementation of three reliable methods for finding the exact solutions of (2 + 1) dimensional generalized fractional evolution equations

verfasst von: Mostafa M. A. Khater, Dipankar Kumar

Erschienen in: Optical and Quantum Electronics | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we have implemented the three methods namely extended \((G^{\prime}/G)\)-expansion, extended \((1/G^{\prime})\)-expansion and \((G^{\prime}/G,\,\,1/G)\)-expansion methods to determine exact solutions for the (2 + 1) dimensional generalized time–space fractional differential equations. We use Conformable fractional derivative and its properties in this research to convert fractional differential equations to ordinary differential equations with integer order. By using above mentioned methods, three types of traveling wave solutions are successfully obtained which have been expressed by the hyperbolic, trigonometric, and rational function solutions. The considered methods and transformation techniques are efficient and consistent for solving nonlinear time and space-fractional differential equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aksoy, E., Kaplan, M., Bekir, A.: Exponential rational function method for space–time fractional differential equations. Waves Random Complex Media 26(2), 142–151 (2016)ADSMathSciNetMATHCrossRef Aksoy, E., Kaplan, M., Bekir, A.: Exponential rational function method for space–time fractional differential equations. Waves Random Complex Media 26(2), 142–151 (2016)ADSMathSciNetMATHCrossRef
Zurück zum Zitat Al-Amr, M.O.: Exact solutions of the generalized (2 + 1)-dimensional nonlinear evolution equations via the modified simple equation method. Comput. Math. Appl. 69(5), 390–397 (2015)MathSciNetCrossRef Al-Amr, M.O.: Exact solutions of the generalized (2 + 1)-dimensional nonlinear evolution equations via the modified simple equation method. Comput. Math. Appl. 69(5), 390–397 (2015)MathSciNetCrossRef
Zurück zum Zitat Ali, A., Iqbal, M.A., Ul-Hassan, Q.M., Ahmad, J., Mohyud-Din, S.T.: An efficient technique for higher order fractional differential equation. SpringerPlus 5(1), 281 (2016)CrossRef Ali, A., Iqbal, M.A., Ul-Hassan, Q.M., Ahmad, J., Mohyud-Din, S.T.: An efficient technique for higher order fractional differential equation. SpringerPlus 5(1), 281 (2016)CrossRef
Zurück zum Zitat Baleanu, D., Uğurlu, Y., Kilic, B.: Improved (G′/G)-expansion method for the time-fractional biological population model and Cahn–Hilliard equation. J. Comput. Nonlinear Dyn. 10(5), 051016 (2015)CrossRef Baleanu, D., Uğurlu, Y., Kilic, B.: Improved (G′/G)-expansion method for the time-fractional biological population model and Cahn–Hilliard equation. J. Comput. Nonlinear Dyn. 10(5), 051016 (2015)CrossRef
Zurück zum Zitat Bekir, A., Guner, O.: Analytical approach for the space–time nonlinear partial differential fractional equation. Int. J. Nonlinear Sci. Numer. Simul. 15(7–8), 463–470 (2014)MathSciNetMATH Bekir, A., Guner, O.: Analytical approach for the space–time nonlinear partial differential fractional equation. Int. J. Nonlinear Sci. Numer. Simul. 15(7–8), 463–470 (2014)MathSciNetMATH
Zurück zum Zitat Bekir, A., Güner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10(2), 021020 (2015)CrossRef Bekir, A., Güner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10(2), 021020 (2015)CrossRef
Zurück zum Zitat Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics. Indian J. Phys. 87(11), 1125–1131 (2013)ADSCrossRef Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics. Indian J. Phys. 87(11), 1125–1131 (2013)ADSCrossRef
Zurück zum Zitat Darvishi, M.T., Najafi, M.: Some exact solutions of the (2 + 1)-dimensional breaking soliton equation using the three-wave method. Int. J. Comput. Math. Sci. 6, 13–16 (2012)MathSciNet Darvishi, M.T., Najafi, M.: Some exact solutions of the (2 + 1)-dimensional breaking soliton equation using the three-wave method. Int. J. Comput. Math. Sci. 6, 13–16 (2012)MathSciNet
Zurück zum Zitat Darvishi, M.T., Najafi, M., Najafi, M.: New application of EHTA for the generalized (2 + 1)-dimensional nonlinear evolution equations. Int. J. Math. Comput. Sci. 6(3), 132–138 (2010) Darvishi, M.T., Najafi, M., Najafi, M.: New application of EHTA for the generalized (2 + 1)-dimensional nonlinear evolution equations. Int. J. Math. Comput. Sci. 6(3), 132–138 (2010)
Zurück zum Zitat Demiray, S.T., Pandir, Y., Bulut, H.: Generalized Kudryashov method for time-fractional differential equations. Abstr. Appl. Anal. 2014, 901540 (2014)MathSciNet Demiray, S.T., Pandir, Y., Bulut, H.: Generalized Kudryashov method for time-fractional differential equations. Abstr. Appl. Anal. 2014, 901540 (2014)MathSciNet
Zurück zum Zitat Feng, Q., Zheng, B.: Exact traveling wave solution for the (2 + 1) dimensional breaking Soliton equation. In: Proceedings of the 2010 American Conference on Applied Mathematics, pp. 440–442. World Scientific and Engineering Academy and Society (WSEAS) (2010) Feng, Q., Zheng, B.: Exact traveling wave solution for the (2 + 1) dimensional breaking Soliton equation. In: Proceedings of the 2010 American Conference on Applied Mathematics, pp. 440–442. World Scientific and Engineering Academy and Society (WSEAS) (2010)
Zurück zum Zitat Gepreel, K.A., Omran, S.: Exact solutions for nonlinear partial fractional differential equations. Chin. Phys. B 21, 110204 (2012)MATHCrossRef Gepreel, K.A., Omran, S.: Exact solutions for nonlinear partial fractional differential equations. Chin. Phys. B 21, 110204 (2012)MATHCrossRef
Zurück zum Zitat Hosseini, K., Gholamin, P.: Feng’s first integral method for analytic treatment of two higher dimensional nonlinear partial differential equations. Differ. Equ. Dyn. Syst. 23(3), 317–325 (2015)MathSciNetMATHCrossRef Hosseini, K., Gholamin, P.: Feng’s first integral method for analytic treatment of two higher dimensional nonlinear partial differential equations. Differ. Equ. Dyn. Syst. 23(3), 317–325 (2015)MathSciNetMATHCrossRef
Zurück zum Zitat Hosseini, K., Ansari, R., Gholamin, P.: Exact solutions of some nonlinear systems of partial differential equations by using the first integral method. J. Math. Anal. Appl. 387(2), 807–814 (2012)MathSciNetMATHCrossRef Hosseini, K., Ansari, R., Gholamin, P.: Exact solutions of some nonlinear systems of partial differential equations by using the first integral method. J. Math. Anal. Appl. 387(2), 807–814 (2012)MathSciNetMATHCrossRef
Zurück zum Zitat Hosseini, K., Bekir, A., Kaplan, M.: New exact traveling wave solutions of the Tzitzéica-type evolution equations arising in non-linear optics. J. Mod. Opt. 1–5 (2017a) Hosseini, K., Bekir, A., Kaplan, M.: New exact traveling wave solutions of the Tzitzéica-type evolution equations arising in non-linear optics. J. Mod. Opt. 1–5 (2017a)
Zurück zum Zitat Hosseini, K., Bekir, A., Ansari, R.: Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp(−ϕ(ε))-expansion method. Opt. Quant. Electron. 49(4), 131 (2017b)CrossRef Hosseini, K., Bekir, A., Ansari, R.: Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp(−ϕ(ε))-expansion method. Opt. Quant. Electron. 49(4), 131 (2017b)CrossRef
Zurück zum Zitat Islam, M.S., Khan, K., Akbar, M.A.: An analytical method for finding exact solutions of modified Korteweg–de Vries equation. Results Phys. 5, 131–135 (2015)ADSCrossRef Islam, M.S., Khan, K., Akbar, M.A.: An analytical method for finding exact solutions of modified Korteweg–de Vries equation. Results Phys. 5, 131–135 (2015)ADSCrossRef
Zurück zum Zitat Jafari, H., Kadkhoda, N.: Application of simplest equation method to the (2 + 1)-dimensional nonlinear evolution equations. New Trends Math. Sci. 2(2), 64–68 (2014) Jafari, H., Kadkhoda, N.: Application of simplest equation method to the (2 + 1)-dimensional nonlinear evolution equations. New Trends Math. Sci. 2(2), 64–68 (2014)
Zurück zum Zitat Khater, M.M.A.: The modified simple equation method and its applications in mathematical physics and biology. Glob. J. Sci. Front. Res. F Math. Decis. Sci. 15(4), Version 1.0 (2015) Khater, M.M.A.: The modified simple equation method and its applications in mathematical physics and biology. Glob. J. Sci. Front. Res. F Math. Decis. Sci. 15(4), Version 1.0 (2015)
Zurück zum Zitat Khater, M.M.A.: Exact traveling waves solutions for the generalized Hirota-Satsuma couple KdV system using the exp (−φ(ξ))-expansion method. Cogent Math. 3(1), 1172397 (2016)MathSciNetCrossRef Khater, M.M.A.: Exact traveling waves solutions for the generalized Hirota-Satsuma couple KdV system using the exp (−φ(ξ))-expansion method. Cogent Math. 3(1), 1172397 (2016)MathSciNetCrossRef
Zurück zum Zitat Khater, M.M.A., Seadawy, A., Lu, D.: Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti–Leon–Pempinelli equations system and time-fractional Cahn–Allen equation. Results Phys. 7, 2325–2333 (2017a)ADSCrossRef Khater, M.M.A., Seadawy, A., Lu, D.: Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti–Leon–Pempinelli equations system and time-fractional Cahn–Allen equation. Results Phys. 7, 2325–2333 (2017a)ADSCrossRef
Zurück zum Zitat Khater, M.M.A., Zahran, E.H.M., Shehata, M.S.M.: Solitary wave solution of the generalized Hirota–Satsuma coupled KdV system. J. Egypt. Math. Soc. 25(1), 8–12 (2017b)MathSciNetMATHCrossRef Khater, M.M.A., Zahran, E.H.M., Shehata, M.S.M.: Solitary wave solution of the generalized Hirota–Satsuma coupled KdV system. J. Egypt. Math. Soc. 25(1), 8–12 (2017b)MathSciNetMATHCrossRef
Zurück zum Zitat Kilabs, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam (2006) Kilabs, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam (2006)
Zurück zum Zitat Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(11), 2248–2253 (2012)ADSMathSciNetMATHCrossRef Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(11), 2248–2253 (2012)ADSMathSciNetMATHCrossRef
Zurück zum Zitat Kumar, D., Hosseini, K., Samadani, F.: The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik Int. J. Light Electron Opt. 148, 439–446 (2017)CrossRef Kumar, D., Hosseini, K., Samadani, F.: The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik Int. J. Light Electron Opt. 148, 439–446 (2017)CrossRef
Zurück zum Zitat Li, L.-X., Li, E.-Q., Wang, M.-L.: The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Appl. Math. J. Chin. Univ. 25(4), 454–462 (2010)MathSciNetMATHCrossRef Li, L.-X., Li, E.-Q., Wang, M.-L.: The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Appl. Math. J. Chin. Univ. 25(4), 454–462 (2010)MathSciNetMATHCrossRef
Zurück zum Zitat Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395(2), 684–693 (2012)MathSciNetMATHCrossRef Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395(2), 684–693 (2012)MathSciNetMATHCrossRef
Zurück zum Zitat Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130(4), 61 (2015a)CrossRef Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130(4), 61 (2015a)CrossRef
Zurück zum Zitat Manafian, J., Lakestani, M.: Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G′/G)-expansion method. Pramana 85(1), 31–52 (2015b)ADSCrossRef Manafian, J., Lakestani, M.: Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G′/G)-expansion method. Pramana 85(1), 31–52 (2015b)ADSCrossRef
Zurück zum Zitat Manafian, J., Lakestani, M.: Application of tan (ϕ/2)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik Int. J. Light Electron Opt. 127(4), 2040–2054 (2016a)CrossRef Manafian, J., Lakestani, M.: Application of tan (ϕ/2)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik Int. J. Light Electron Opt. 127(4), 2040–2054 (2016a)CrossRef
Zurück zum Zitat Manafian, J., Lakestani, M.: Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Opt. Quant. Electron. 48(2), 116 (2016b)CrossRef Manafian, J., Lakestani, M.: Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Opt. Quant. Electron. 48(2), 116 (2016b)CrossRef
Zurück zum Zitat Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATH Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATH
Zurück zum Zitat Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, A.G.A.: Exact solutions for Calogero–Bogoyavlenskii–Schiff equation using symmetry method. Appl. Math. Comput. 220, 455–462 (2013)MathSciNetMATH Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, A.G.A.: Exact solutions for Calogero–Bogoyavlenskii–Schiff equation using symmetry method. Appl. Math. Comput. 220, 455–462 (2013)MathSciNetMATH
Zurück zum Zitat Najafi, M., Arbabi, S., Najafi, M.: New application of sine–cosine method for the generalized (2 + 1)-dimensional nonlinear evolution equations. Int. J. Adv. Math. Sci. 1(2), 45–49 (2013a)MATH Najafi, M., Arbabi, S., Najafi, M.: New application of sine–cosine method for the generalized (2 + 1)-dimensional nonlinear evolution equations. Int. J. Adv. Math. Sci. 1(2), 45–49 (2013a)MATH
Zurück zum Zitat Najafi, M., Najafi, M., Arbabi, S.: New exact solutions for the generalized (2 + 1)-dimensional nonlinear evolution equations by tanh–coth method. Int. J. Mod. Theor. Phys. 2(2), 79–85 (2013b)MATH Najafi, M., Najafi, M., Arbabi, S.: New exact solutions for the generalized (2 + 1)-dimensional nonlinear evolution equations by tanh–coth method. Int. J. Mod. Theor. Phys. 2(2), 79–85 (2013b)MATH
Zurück zum Zitat Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
Zurück zum Zitat Ray, S.S., Sahoo, S.: New exact solutions of fractional Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations using fractional sub-equation method. Commun. Theor. Phys. 63(1), 25 (2015)ADSMathSciNetMATHCrossRef Ray, S.S., Sahoo, S.: New exact solutions of fractional Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations using fractional sub-equation method. Commun. Theor. Phys. 63(1), 25 (2015)ADSMathSciNetMATHCrossRef
Zurück zum Zitat Rida, S.Z., Arafa, A.A.M., Mohamed, H.: Homotopy analysis method for solving biological population model. Commun. Theor. Phys. 56(5), 797 (2011)MathSciNetMATHCrossRef Rida, S.Z., Arafa, A.A.M., Mohamed, H.: Homotopy analysis method for solving biological population model. Commun. Theor. Phys. 56(5), 797 (2011)MathSciNetMATHCrossRef
Zurück zum Zitat Seadawy, A.R., Lu, D., Khater, M.M.A.: Solitary wave solutions for the generalized Zakharov–kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation. J. Ocean Eng. Sci. 2(2), 137–142 (2017)CrossRef Seadawy, A.R., Lu, D., Khater, M.M.A.: Solitary wave solutions for the generalized Zakharov–kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation. J. Ocean Eng. Sci. 2(2), 137–142 (2017)CrossRef
Zurück zum Zitat Seadawy, A.R., Lu, D., Khater, M.M.A.: Bifurcations of solitary wave solutions for the three dimensional Zakharov–Kuznetsov–Burgers equation and Boussinesq equation with dual dispersion. Optik Int. J. Light Electron Opt. 43, 104–114 (2017)CrossRef Seadawy, A.R., Lu, D., Khater, M.M.A.: Bifurcations of solitary wave solutions for the three dimensional Zakharov–Kuznetsov–Burgers equation and Boussinesq equation with dual dispersion. Optik Int. J. Light Electron Opt. 43, 104–114 (2017)CrossRef
Zurück zum Zitat Shakeel, M., Mohyud-Din, S.T.: Improved (G′/G)-expansion and extended tanh methods for (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. Alex. Eng. J. 54(1), 27–33 (2015)CrossRef Shakeel, M., Mohyud-Din, S.T.: Improved (G′/G)-expansion and extended tanh methods for (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. Alex. Eng. J. 54(1), 27–33 (2015)CrossRef
Zurück zum Zitat Wang, M., Li, X., Zhang, J.: The (G′/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)ADSMathSciNetMATHCrossRef Wang, M., Li, X., Zhang, J.: The (G′/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)ADSMathSciNetMATHCrossRef
Zurück zum Zitat Wazwaz, A.M.: Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo-Miwa and YTSF equations. Appl. Math. Comput. 203(2), 592–597 (2008)MathSciNetMATH Wazwaz, A.M.: Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo-Miwa and YTSF equations. Appl. Math. Comput. 203(2), 592–597 (2008)MathSciNetMATH
Zurück zum Zitat Wazwaz, A.M.: The (2 + 1)-dimensional CBS equations: multiple soliton solutions and multiple singular soliton solutions. Zeitschrift fur Naturforschung A 65(3), 173–181 (2010)ADS Wazwaz, A.M.: The (2 + 1)-dimensional CBS equations: multiple soliton solutions and multiple singular soliton solutions. Zeitschrift fur Naturforschung A 65(3), 173–181 (2010)ADS
Zurück zum Zitat Yokus, A.: Solutions of some nonlinear partial differential equations and comparison of their solutions. Ph.D. thesis, Firat University, Turkey (2011) Yokus, A.: Solutions of some nonlinear partial differential equations and comparison of their solutions. Ph.D. thesis, Firat University, Turkey (2011)
Zurück zum Zitat Zahran, E.H.M., Khater, M.M.A.: The two-variable (G′/G, 1/G)-expansion method for solving nonlinear dynamics of microtubles—a new model. Glob. J. Sci. Front. Res. A Phys. Space Sci. 15(2), Version 1.0 (2015) Zahran, E.H.M., Khater, M.M.A.: The two-variable (G′/G, 1/G)-expansion method for solving nonlinear dynamics of microtubles—a new model. Glob. J. Sci. Front. Res. A Phys. Space Sci. 15(2), Version 1.0 (2015)
Zurück zum Zitat Zahran, E.H., Khater, M.M.A.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40(3), 1769–1775 (2016)MathSciNetCrossRef Zahran, E.H., Khater, M.M.A.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40(3), 1769–1775 (2016)MathSciNetCrossRef
Zurück zum Zitat Zhang, Y.: Solving STO and KD equations with modified Riemann–Liouville derivative using improved (G′/G)-expansion function method. IAENG Int. J. Appl. Math. 45(1), 16–22 (2015)MathSciNet Zhang, Y.: Solving STO and KD equations with modified Riemann–Liouville derivative using improved (G′/G)-expansion function method. IAENG Int. J. Appl. Math. 45(1), 16–22 (2015)MathSciNet
Zurück zum Zitat Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–1073 (2011)ADSMathSciNetMATHCrossRef Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–1073 (2011)ADSMathSciNetMATHCrossRef
Zurück zum Zitat Zheng, B.: (G′/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623–630 (2012)ADSMathSciNetMATHCrossRef Zheng, B.: (G′/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623–630 (2012)ADSMathSciNetMATHCrossRef
Metadaten
Titel
Implementation of three reliable methods for finding the exact solutions of (2 + 1) dimensional generalized fractional evolution equations
verfasst von
Mostafa M. A. Khater
Dipankar Kumar
Publikationsdatum
01.11.2018
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 11/2018
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-017-1249-3

Weitere Artikel der Ausgabe 11/2018

Optical and Quantum Electronics 11/2018 Zur Ausgabe

Neuer Inhalt