Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Implementing Molecular Logic Gates, Circuits, and Cascades Using DNAzymes

verfasst von : Matthew R. Lakin, Milan N. Stojanovic, Darko Stefanovic

Erschienen in: Advances in Unconventional Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The programmable nature of DNA chemistry makes it an attractive framework for the implementation of unconventional computing systems. Our early work in this area was among the first to use oligonucleotide-based logic gates to perform computations in a bulk solution. In this chapter we chart the development of this technology over the course of almost 15 years. We review our work on the implementation of DNA-based logic gates and circuits, which we have used to demonstrate digital logic circuits, autonomous game-playing automata, trainable systems and, more recently, decision-making circuits with potential diagnostic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRef Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRef
2.
Zurück zum Zitat Aguirre, S.D., Ali, M.M., Kanda, P., Li, Y.: Detection of bacteria using fluorogenic DNAzymes. J. Vis. Exp. 63, e3961 (2012). doi:10.3791/3961 Aguirre, S.D., Ali, M.M., Kanda, P., Li, Y.: Detection of bacteria using fluorogenic DNAzymes. J. Vis. Exp. 63, e3961 (2012). doi:10.​3791/​3961
3.
Zurück zum Zitat Aguirre, S.D., Ali, M.M., Salena, B.J., Li, Y.: A sensitive DNA enzyme-based fluorescent assay for bacterial detection. Biomolecules 3, 563–577 (2013). doi:10.3390/biom3030563 CrossRef Aguirre, S.D., Ali, M.M., Salena, B.J., Li, Y.: A sensitive DNA enzyme-based fluorescent assay for bacterial detection. Biomolecules 3, 563–577 (2013). doi:10.​3390/​biom3030563 CrossRef
4.
Zurück zum Zitat Ali, M.M., Aguirre, S.D., Lazim, H., Li, Y.: Fluorogenic DNAzyme probes as bacterial indicators. Angew. Chem. Int. Ed. 50, 3751–3754 (2011)CrossRef Ali, M.M., Aguirre, S.D., Lazim, H., Li, Y.: Fluorogenic DNAzyme probes as bacterial indicators. Angew. Chem. Int. Ed. 50, 3751–3754 (2011)CrossRef
5.
Zurück zum Zitat Ali, M.M., Aguirre, S.D., Mok, W.W.K., Li, Y.: Developing fluorogenic RNA-cleaving DNAzymes for biosensing applications. In: Hartig, J.S., (ed.) Ribozymes, Methods in Molecular Biology, vol. 848, pp. 395–418. Springer, New York (2012) Ali, M.M., Aguirre, S.D., Mok, W.W.K., Li, Y.: Developing fluorogenic RNA-cleaving DNAzymes for biosensing applications. In: Hartig, J.S., (ed.) Ribozymes, Methods in Molecular Biology, vol. 848, pp. 395–418. Springer, New York (2012)
6.
Zurück zum Zitat Ali, M.M., Li, Y.: Colorimetric sensing using allosteric DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. Angew. Chem. Int. Ed. 48, 3512–3515 (2009)CrossRef Ali, M.M., Li, Y.: Colorimetric sensing using allosteric DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. Angew. Chem. Int. Ed. 48, 3512–3515 (2009)CrossRef
7.
Zurück zum Zitat Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Boca Raton (2007) Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Boca Raton (2007)
8.
Zurück zum Zitat Bennett, C.H.: The thermodynamics of computation–a review. Int. J. Theor. Phys. 21(12), 905–940 (1982)CrossRef Bennett, C.H.: The thermodynamics of computation–a review. Int. J. Theor. Phys. 21(12), 905–940 (1982)CrossRef
9.
Zurück zum Zitat Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch, T., Wint, G.R.W., Simmons, C.P., Scott, T.W., Farrar, J.J., Hay, S.I.: The global distribution and burden of dengue. Nature 496, 504–507 (2013). doi:10.1038/nature12060 CrossRef Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch, T., Wint, G.R.W., Simmons, C.P., Scott, T.W., Farrar, J.J., Hay, S.I.: The global distribution and burden of dengue. Nature 496, 504–507 (2013). doi:10.​1038/​nature12060 CrossRef
10.
Zurück zum Zitat Bone, S.M., Hasick, N.J., Lima, N.E., Erskine, S.M., Mokany, E., Todd, A.V.: DNA-only cascade: A universal tool for signal amplification, enhancing the detection of target analytes. Anal. Chem. 86(18), 9106–9113 (2014). doi:10.1021/ac501811r CrossRef Bone, S.M., Hasick, N.J., Lima, N.E., Erskine, S.M., Mokany, E., Todd, A.V.: DNA-only cascade: A universal tool for signal amplification, enhancing the detection of target analytes. Anal. Chem. 86(18), 9106–9113 (2014). doi:10.​1021/​ac501811r CrossRef
11.
Zurück zum Zitat Brandsen, B.M., Velez, T.E., Sachdeva, A., Ibrahim, N.A., Silverman, S.K.: DNA-catalyzed lysine side chain modification. Angew. Chem. Int. Ed. 53(34), 9045–9050 (2014). doi:10.1002/anie.201404622 CrossRef Brandsen, B.M., Velez, T.E., Sachdeva, A., Ibrahim, N.A., Silverman, S.K.: DNA-catalyzed lysine side chain modification. Angew. Chem. Int. Ed. 53(34), 9045–9050 (2014). doi:10.​1002/​anie.​201404622 CrossRef
12.
Zurück zum Zitat Breaker, R.R.: In vitro selection of catalytic polynucleotides. Chem. Rev. 97(2), 371–390 (1997)CrossRef Breaker, R.R.: In vitro selection of catalytic polynucleotides. Chem. Rev. 97(2), 371–390 (1997)CrossRef
13.
Zurück zum Zitat Breaker, R.R., Joyce, G.F.: A DNA enzyme with Mg\({}^{2+}\)-dependent RNA phosphoesterase activity. Chem. Biol. 2(10), 655–656 (1995)CrossRef Breaker, R.R., Joyce, G.F.: A DNA enzyme with Mg\({}^{2+}\)-dependent RNA phosphoesterase activity. Chem. Biol. 2(10), 655–656 (1995)CrossRef
14.
Zurück zum Zitat Brown III, C.W., Lakin, M.R., Fabry-Wood, A., Horwitz, E.K., Baker, N.A., Stefanovic, D., Graves, S.W.: A unified sensor architecture for isothermal detection of double-stranded DNA, oligonucleotides, and small molecules. ChemBioChem 16, 725–730 (2015). doi:10.1002/cbic.201402615 CrossRef Brown III, C.W., Lakin, M.R., Fabry-Wood, A., Horwitz, E.K., Baker, N.A., Stefanovic, D., Graves, S.W.: A unified sensor architecture for isothermal detection of double-stranded DNA, oligonucleotides, and small molecules. ChemBioChem 16, 725–730 (2015). doi:10.​1002/​cbic.​201402615 CrossRef
15.
Zurück zum Zitat Brown III, C.W., Lakin, M.R., Horwitz, E.K., Fanning, M.L., West, H.E., Stefanovic, D., Graves, S.W.: Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates. Angew. Chem. Int. Ed. 53(28), 7183–7187 (2014). doi:10.1002/anie.201402691 CrossRef Brown III, C.W., Lakin, M.R., Horwitz, E.K., Fanning, M.L., West, H.E., Stefanovic, D., Graves, S.W.: Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates. Angew. Chem. Int. Ed. 53(28), 7183–7187 (2014). doi:10.​1002/​anie.​201402691 CrossRef
17.
Zurück zum Zitat Chandra, M., Sachdeva, A., Silverman, S.K.: DNA-catalyzed sequence-specific hydrolysis of DNA. Nat. Chem. Biol. 5(10), 718–720 (2009)CrossRef Chandra, M., Sachdeva, A., Silverman, S.K.: DNA-catalyzed sequence-specific hydrolysis of DNA. Nat. Chem. Biol. 5(10), 718–720 (2009)CrossRef
19.
Zurück zum Zitat Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013). doi:10.1038/nnano.2013.189 CrossRef Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013). doi:10.​1038/​nnano.​2013.​189 CrossRef
20.
Zurück zum Zitat Credi, A.: Molecules that make decisions. Angew. Chem. Int. Ed. 46(29), 5472–5475 (2007)CrossRef Credi, A.: Molecules that make decisions. Angew. Chem. Int. Ed. 46(29), 5472–5475 (2007)CrossRef
21.
Zurück zum Zitat Dass, C.R.: Deoxyribozymes: cleaving a path to clinical trials. Trend. Pharmacol. Sci. 25(8), 395–397 (2004)CrossRef Dass, C.R.: Deoxyribozymes: cleaving a path to clinical trials. Trend. Pharmacol. Sci. 25(8), 395–397 (2004)CrossRef
24.
Zurück zum Zitat Dass, C.R., Saravolac, E.G., Li, Y., Sun, L.Q.: Cellular uptake, distribution, and stability of 10–23 deoxyribozymes. Antisense Nucl. Acid Drug Dev. 12, 289–299 (2002)CrossRef Dass, C.R., Saravolac, E.G., Li, Y., Sun, L.Q.: Cellular uptake, distribution, and stability of 10–23 deoxyribozymes. Antisense Nucl. Acid Drug Dev. 12, 289–299 (2002)CrossRef
25.
Zurück zum Zitat Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007)MathSciNetMATHCrossRef Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24, 1664–1677 (2003)CrossRef Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24, 1664–1677 (2003)CrossRef
27.
Zurück zum Zitat Dirks, R.M., Pierce, N.A.: An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem. 25, 1295–1304 (2004)CrossRef Dirks, R.M., Pierce, N.A.: An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem. 25, 1295–1304 (2004)CrossRef
28.
Zurück zum Zitat Eckhoff, G., Codrea, V., Ellington, A.D., Chen, X.: Beyond allostery: catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier. J. Syst. Chem. 1, 13 (2010). doi:10.1186/1759-2208-1-13 CrossRef Eckhoff, G., Codrea, V., Ellington, A.D., Chen, X.: Beyond allostery: catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier. J. Syst. Chem. 1, 13 (2010). doi:10.​1186/​1759-2208-1-13 CrossRef
30.
Zurück zum Zitat Elbaz, J., Lioubashevski, O., Wang, F., Remacle, F., Levine, R.D., Willner, I.: DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotechnol. 5(6), 417–422 (2010)CrossRef Elbaz, J., Lioubashevski, O., Wang, F., Remacle, F., Levine, R.D., Willner, I.: DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotechnol. 5(6), 417–422 (2010)CrossRef
31.
Zurück zum Zitat Elbaz, J., Moshe, M., Shlyahovsky, B., Willner, I.: Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: A paradigm for DNA sensors and aptasensors. Chemistry–A. Eur. J. 15, 3411–3418 (2009)CrossRef Elbaz, J., Moshe, M., Shlyahovsky, B., Willner, I.: Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: A paradigm for DNA sensors and aptasensors. Chemistry–A. Eur. J. 15, 3411–3418 (2009)CrossRef
32.
Zurück zum Zitat Elbaz, J., Wang, F., Remacle, F., Willner, I.: PH-programmable DNA logic arrays powered by modular DNAzyme libraries. Nano Lett. 12, 6049–6054 (2012). doi:10.1021/nl300051g Elbaz, J., Wang, F., Remacle, F., Willner, I.: PH-programmable DNA logic arrays powered by modular DNAzyme libraries. Nano Lett. 12, 6049–6054 (2012). doi:10.​1021/​nl300051g
33.
Zurück zum Zitat Farfel, J., Stefanovic, D.: Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In: Carbone, A., Pierce, N.A. (eds.) Proceedings of the 11th International Meeting on DNA Computing, Lecture Notes in Computer Science, vol. 3892, pp. 38–54. Springer, Heidelberg (2006) Farfel, J., Stefanovic, D.: Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In: Carbone, A., Pierce, N.A. (eds.) Proceedings of the 11th International Meeting on DNA Computing, Lecture Notes in Computer Science, vol. 3892, pp. 38–54. Springer, Heidelberg (2006)
34.
Zurück zum Zitat Flynn-Charlebois, A., Wang, Y., Prior, T.K., Rashid, I., Hoadley, K.A., Coppins, R.L., Wolf, A.C., Silverman, S.K.: Deoxyribozymes with 2’-5’ RNA ligase activity. J. Am. Chem. Soc. 125, 2444–2454 (2003). doi:10.1021/ja028774y CrossRef Flynn-Charlebois, A., Wang, Y., Prior, T.K., Rashid, I., Hoadley, K.A., Coppins, R.L., Wolf, A.C., Silverman, S.K.: Deoxyribozymes with 2’-5’ RNA ligase activity. J. Am. Chem. Soc. 125, 2444–2454 (2003). doi:10.​1021/​ja028774y CrossRef
35.
Zurück zum Zitat Gerasimova, Y.V., Cornett, E.M., Edwards, E., Su, X., Rohde, K.H., Kolpashchikov, D.M.: Deoxyribozyme cascade for visual detection of bacterial RNA. ChemBioChem 14, 2087–2090 (2013). doi:10.1002/cbic.201300471 CrossRef Gerasimova, Y.V., Cornett, E.M., Edwards, E., Su, X., Rohde, K.H., Kolpashchikov, D.M.: Deoxyribozyme cascade for visual detection of bacterial RNA. ChemBioChem 14, 2087–2090 (2013). doi:10.​1002/​cbic.​201300471 CrossRef
36.
Zurück zum Zitat Gerasimova, Y.V., Kolpashchikov, D.M.: Folding of 16S rRNA in a signal-producing structure for the detection of bacteria. Angew. Chem. Int. Ed. 52, 10586–10588 (2013). doi:10.1002/anie.201303919 CrossRef Gerasimova, Y.V., Kolpashchikov, D.M.: Folding of 16S rRNA in a signal-producing structure for the detection of bacteria. Angew. Chem. Int. Ed. 52, 10586–10588 (2013). doi:10.​1002/​anie.​201303919 CrossRef
37.
Zurück zum Zitat Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E.M., Sipos, B., Birney, E.: Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013). doi:10.1038/nature11875 CrossRef Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E.M., Sipos, B., Birney, E.: Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013). doi:10.​1038/​nature11875 CrossRef
38.
Zurück zum Zitat Goudarzi, A., Lakin, M.R., Stefanovic, D.: DNA reservoir computing: a novel molecular computing approach. In: Soloveichik, D., Yurke, B. (eds.) Proceedings of the 19th International Conference on DNA Computing and Molecular Programming, Lecture Notes in Computer Science, vol. 8141, pp. 76–89. Springer, Heidelberg (2013). doi:10.1007/978-3-319-01928-4_6 Goudarzi, A., Lakin, M.R., Stefanovic, D.: DNA reservoir computing: a novel molecular computing approach. In: Soloveichik, D., Yurke, B. (eds.) Proceedings of the 19th International Conference on DNA Computing and Molecular Programming, Lecture Notes in Computer Science, vol. 8141, pp. 76–89. Springer, Heidelberg (2013). doi:10.​1007/​978-3-319-01928-4_​6
39.
Zurück zum Zitat Gu, H., Furukawa, K., Weinberg, Z., Berenson, D.F., Breaker, R.R.: Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 135, 9121–9129 (2013). doi:10.1021/ja403585e Gu, H., Furukawa, K., Weinberg, Z., Berenson, D.F., Breaker, R.R.: Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 135, 9121–9129 (2013). doi:10.​1021/​ja403585e
40.
Zurück zum Zitat He, S., Qu, L., Shen, Z., Tan, Y., Zeng, M., Liu, F., Jiang, Y., Li, Y.: Highly specific recognition of breast tumors by an RNA-cleaving fluorogenic DNAzyme probe. Anal. Chem. 87(1), 569–577 (2014). doi:10.1021/ac5031557 CrossRef He, S., Qu, L., Shen, Z., Tan, Y., Zeng, M., Liu, F., Jiang, Y., Li, Y.: Highly specific recognition of breast tumors by an RNA-cleaving fluorogenic DNAzyme probe. Anal. Chem. 87(1), 569–577 (2014). doi:10.​1021/​ac5031557 CrossRef
42.
Zurück zum Zitat Huang, P.J.J., Vazin, M., Liu, J.: In vitro selection of a new lanthanide-dependent DNAzyme for ratiometric sensing lanthanides. Anal. Chem. 86(19), 9993–9999 (2014). doi:10.1021/ac5029962 CrossRef Huang, P.J.J., Vazin, M., Liu, J.: In vitro selection of a new lanthanide-dependent DNAzyme for ratiometric sensing lanthanides. Anal. Chem. 86(19), 9993–9999 (2014). doi:10.​1021/​ac5029962 CrossRef
43.
Zurück zum Zitat Huang, P.J.J., Vazin, M., Matuszek, Z., Liu, J.: A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect. Nucleic Acid. Res. 43(1), 461–469 (2015). doi:10.1093/nar/gku1296 CrossRef Huang, P.J.J., Vazin, M., Matuszek, Z., Liu, J.: A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect. Nucleic Acid. Res. 43(1), 461–469 (2015). doi:10.​1093/​nar/​gku1296 CrossRef
44.
Zurück zum Zitat Hwang, K., Wu, P., Kim, T., Lei, L., Tian, S., Wang, Y., Lu, Y.: Photocaged DNAzymes as a general method for sensing metal ions in living cells. Angew. Chem. Int. Ed. 53, 13798–13802 (2014)CrossRef Hwang, K., Wu, P., Kim, T., Lei, L., Tian, S., Wang, Y., Lu, Y.: Photocaged DNAzymes as a general method for sensing metal ions in living cells. Angew. Chem. Int. Ed. 53, 13798–13802 (2014)CrossRef
45.
Zurück zum Zitat Hayden, J.E., Riley, C.A., Burton, A.S., Lehman, N.: RNA-directed construction of structurally complex and active ligase ribozymes through recombination. RNA 11(11), 1678–1687 (2005). doi:10.1261/rna.2125305 Hayden, J.E., Riley, C.A., Burton, A.S., Lehman, N.: RNA-directed construction of structurally complex and active ligase ribozymes through recombination. RNA 11(11), 1678–1687 (2005). doi:10.​1261/​rna.​2125305
46.
Zurück zum Zitat Kahan-Hanum, M., Douek, Y., Adar, R., Shapiro, E.: A library of programmable DNAzymes that operate in a cellular environment. Sci. Rep. 3, 1535 (2013)CrossRef Kahan-Hanum, M., Douek, Y., Adar, R., Shapiro, E.: A library of programmable DNAzymes that operate in a cellular environment. Sci. Rep. 3, 1535 (2013)CrossRef
47.
Zurück zum Zitat Katz, E., Privman, V.: Enzyme-based logic systems for information processing. Chem. Soc. Rev. 39(5), 1835–1857 (2010)CrossRef Katz, E., Privman, V.: Enzyme-based logic systems for information processing. Chem. Soc. Rev. 39(5), 1835–1857 (2010)CrossRef
50.
51.
Zurück zum Zitat Kolpashchikov, D.M.: A binary deoxyribozyme for nucleic acid analysis. ChemBioChem 8, 2039–2042 (2007)CrossRef Kolpashchikov, D.M.: A binary deoxyribozyme for nucleic acid analysis. ChemBioChem 8, 2039–2042 (2007)CrossRef
52.
Zurück zum Zitat Kolpashchikov, D.M.: Binary probes for nucleic acid analysis. Chem. Rev. 110, 4709–4723 (2010)CrossRef Kolpashchikov, D.M.: Binary probes for nucleic acid analysis. Chem. Rev. 110, 4709–4723 (2010)CrossRef
53.
Zurück zum Zitat Kolpashchikov, D.M., Gerasimova, Y.V., Khan, M.S.: DNA nanotechnology for nucleic acid analysis: DX motif-based sensor. ChemBioChem 12, 2564–2567 (2011)CrossRef Kolpashchikov, D.M., Gerasimova, Y.V., Khan, M.S.: DNA nanotechnology for nucleic acid analysis: DX motif-based sensor. ChemBioChem 12, 2564–2567 (2011)CrossRef
55.
Zurück zum Zitat Lakin, M.R., Brown III, C.W., Horwitz, E.K., Fanning, M.L., West, H.E., Stefanovic, D., Graves, S.W.: Biophysically inspired rational design of structured chimeric substrates for DNAzyme cascade engineering. PLoS ONE 9(10), e110986 (2014). doi:10.1371/journal.pone.0110986 Lakin, M.R., Brown III, C.W., Horwitz, E.K., Fanning, M.L., West, H.E., Stefanovic, D., Graves, S.W.: Biophysically inspired rational design of structured chimeric substrates for DNAzyme cascade engineering. PLoS ONE 9(10), e110986 (2014). doi:10.​1371/​journal.​pone.​0110986
56.
Zurück zum Zitat Lam, B.J., Joyce, G.F.: Autocatalytic aptazymes enable ligand-dependent exponential amplification of RNA. Nat. Biotechnol. 27(3), 288–292 (2009). doi:10.1038/nbt.1528 CrossRef Lam, B.J., Joyce, G.F.: Autocatalytic aptazymes enable ligand-dependent exponential amplification of RNA. Nat. Biotechnol. 27(3), 288–292 (2009). doi:10.​1038/​nbt.​1528 CrossRef
57.
Zurück zum Zitat Lan, T., Furuya, K., Lu, Y.: A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun. 46, 3896–3898 (2010)CrossRef Lan, T., Furuya, K., Lu, Y.: A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun. 46, 3896–3898 (2010)CrossRef
58.
Zurück zum Zitat Lederman, H., Macdonald, J., Stefanovic, D., Stojanovic, M.N.: Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45(4), 1194–1199 (2006)CrossRef Lederman, H., Macdonald, J., Stefanovic, D., Stojanovic, M.N.: Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45(4), 1194–1199 (2006)CrossRef
59.
Zurück zum Zitat Lee, C.S., Mui, T.P., Silverman, S.K.: Improved deoxyribozymes for synthesis of covalently branched DNA and RNA. Nucleic Acid. Res. 39(1), 269–279 (2011). doi:10.1093/nar/gkq753 CrossRef Lee, C.S., Mui, T.P., Silverman, S.K.: Improved deoxyribozymes for synthesis of covalently branched DNA and RNA. Nucleic Acid. Res. 39(1), 269–279 (2011). doi:10.​1093/​nar/​gkq753 CrossRef
60.
Zurück zum Zitat Lee, J.H., Wang, Z., Liu, J., Lu, Y.: Highly sensitive and selective colorimetric sensors for uranyl (\({\rm {UO}}_{2}^{2+}\)): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J. Am. Chem. Soc. 130, 14217–14226 (2008)CrossRef Lee, J.H., Wang, Z., Liu, J., Lu, Y.: Highly sensitive and selective colorimetric sensors for uranyl (\({\rm {UO}}_{2}^{2+}\)): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J. Am. Chem. Soc. 130, 14217–14226 (2008)CrossRef
62.
Zurück zum Zitat Lincoln, T.A., Joyce, G.F.: Self-sustained replication of an RNA enzyme. Science 323, 1229–1232 (2009)CrossRef Lincoln, T.A., Joyce, G.F.: Self-sustained replication of an RNA enzyme. Science 323, 1229–1232 (2009)CrossRef
64.
Zurück zum Zitat Lu, C.H., Wang, F., Willner, I.: Zn\(^{2+}\)-ligation DNAzyme-driven enzymatic and nonenzymatic cascades for the amplified detection of DNA. J. Am. Chem. Soc. 134(25), 10651–10658 (2012)CrossRef Lu, C.H., Wang, F., Willner, I.: Zn\(^{2+}\)-ligation DNAzyme-driven enzymatic and nonenzymatic cascades for the amplified detection of DNA. J. Am. Chem. Soc. 134(25), 10651–10658 (2012)CrossRef
65.
Zurück zum Zitat Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–209 (2010) Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–209 (2010)
66.
Zurück zum Zitat Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic gates in an automaton. Nano Lett. 6(11), 2598–2603 (2006)CrossRef Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic gates in an automaton. Nano Lett. 6(11), 2598–2603 (2006)CrossRef
67.
Zurück zum Zitat Macdonald, J., Stefanovic, D., Stojanovic, M.N.: DNA computers for work and play. Sci. Am. 299(5), 84–91 (2008)CrossRef Macdonald, J., Stefanovic, D., Stojanovic, M.N.: DNA computers for work and play. Sci. Am. 299(5), 84–91 (2008)CrossRef
68.
Zurück zum Zitat McManus, S.A., Li, Y.: Turning a kinase deoxyribozyme into a sensor. J. Am. Chem. Soc. 135(19), 7181–7186 (2013)CrossRef McManus, S.A., Li, Y.: Turning a kinase deoxyribozyme into a sensor. J. Am. Chem. Soc. 135(19), 7181–7186 (2013)CrossRef
69.
Zurück zum Zitat Mitchell, A., Dass, C.R., Sun, L.Q., Khachigian, L.M.: Inhibition of human breast carcinoma proliferation, migration, chemoinvasion and solid tumour growth by DNAzymes targeting the zinc finger transcription factor EGR-1. Nucleic Acid. Res. 32(10), 3065–3069 (2004). doi:10.1093/nar/gkh626 CrossRef Mitchell, A., Dass, C.R., Sun, L.Q., Khachigian, L.M.: Inhibition of human breast carcinoma proliferation, migration, chemoinvasion and solid tumour growth by DNAzymes targeting the zinc finger transcription factor EGR-1. Nucleic Acid. Res. 32(10), 3065–3069 (2004). doi:10.​1093/​nar/​gkh626 CrossRef
70.
Zurück zum Zitat Mokany, E., Bone, S.M., Young, P.E., Doan, T.B., Todd, A.V.: MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches. J. Am. Chem. Soc. 132, 1051–1059 (2010). doi:10.1021/ja9076777 CrossRef Mokany, E., Bone, S.M., Young, P.E., Doan, T.B., Todd, A.V.: MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches. J. Am. Chem. Soc. 132, 1051–1059 (2010). doi:10.​1021/​ja9076777 CrossRef
71.
Zurück zum Zitat Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011). doi:10.1038/msb.2011.12 CrossRef Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011). doi:10.​1038/​msb.​2011.​12 CrossRef
72.
Zurück zum Zitat Mui, T.P., Silverman, S.K.: Convergent and general one-step DNA-catalyzed synthesis of multiply branched DNA. Organ. Lett. 10(20), 4417–4420 (2008)CrossRef Mui, T.P., Silverman, S.K.: Convergent and general one-step DNA-catalyzed synthesis of multiply branched DNA. Organ. Lett. 10(20), 4417–4420 (2008)CrossRef
73.
Zurück zum Zitat Muscat, R.A., Strauss, K., Ceze, L., Seelig, G.: DNA-based molecular architecture with spatially localized components. In: ISCA ’13: Proceedings of the 40th Annual International Symposium on Computer Architecture, pp. 177–188. ACM, New York (2013) Muscat, R.A., Strauss, K., Ceze, L., Seelig, G.: DNA-based molecular architecture with spatially localized components. In: ISCA ’13: Proceedings of the 40th Annual International Symposium on Computer Architecture, pp. 177–188. ACM, New York (2013)
75.
Zurück zum Zitat Olea, Jr. C., Horning, D.P., Joyce, G.F.: Ligand-dependent exponential amplification of a self-replicating lRNA enzyme. J. Am. Chem. Soc. 134, 8050–8053 (2012). doi:10.1021/ja302197x Olea, Jr. C., Horning, D.P., Joyce, G.F.: Ligand-dependent exponential amplification of a self-replicating lRNA enzyme. J. Am. Chem. Soc. 134, 8050–8053 (2012). doi:10.​1021/​ja302197x
76.
Zurück zum Zitat Orbach, R., Remacle, F., Levine, R.D., Willner, I.: DNAzyme-based 2:1 and 4:1 multiplexers and 1:2 demultiplexer. Chem. Sci. 5, 1074–1081 (2014)CrossRef Orbach, R., Remacle, F., Levine, R.D., Willner, I.: DNAzyme-based 2:1 and 4:1 multiplexers and 1:2 demultiplexer. Chem. Sci. 5, 1074–1081 (2014)CrossRef
77.
Zurück zum Zitat Osborne, S.E., Ellington, A.D.: Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97(2), 349–370 (1997)CrossRef Osborne, S.E., Ellington, A.D.: Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97(2), 349–370 (1997)CrossRef
78.
Zurück zum Zitat Parker, D.J., Xiao, Y., Aguilar, J.M., Silverman, S.K.: DNA catalysis of a normally disfavored RNA hydrolysis reaction. J. Am. Chem. Soc. 135(23), 8472–8475 (2013). doi:10.1021/ja4032488 CrossRef Parker, D.J., Xiao, Y., Aguilar, J.M., Silverman, S.K.: DNA catalysis of a normally disfavored RNA hydrolysis reaction. J. Am. Chem. Soc. 135(23), 8472–8475 (2013). doi:10.​1021/​ja4032488 CrossRef
82.
Zurück zum Zitat Pei, R., Matamoros, E., Liu, M., Stefanovic, D., Stojanovic, M.N.: Training a molecular automaton to play a game. Nat. Nanotechnol. 5, 773–777 (2010)CrossRef Pei, R., Matamoros, E., Liu, M., Stefanovic, D., Stojanovic, M.N.: Training a molecular automaton to play a game. Nat. Nanotechnol. 5, 773–777 (2010)CrossRef
83.
Zurück zum Zitat Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: Behavior of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc. 128(39), 12693–12699 (2006)CrossRef Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: Behavior of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc. 128(39), 12693–12699 (2006)CrossRef
84.
85.
Zurück zum Zitat Plotnikov, A., Zehorai, E., Procaccia, S., Seger, R.: The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica Acta 1813, 1619–1633 (2011)CrossRef Plotnikov, A., Zehorai, E., Procaccia, S., Seger, R.: The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica Acta 1813, 1619–1633 (2011)CrossRef
86.
Zurück zum Zitat Poje, J.E., Kastratovic, T., Macdonald, A.R., Guillermo, A.C., Troetti, S.E., Jabado, O.J., Fanning, M.L., Stefanovic, D., Macdonald, J.: Visual displays that directly interface and provide read-outs of molecular states via molecular graphics processing units. Angew. Chem. Int. Ed. 53(35), 9222–9225 (2014)CrossRef Poje, J.E., Kastratovic, T., Macdonald, A.R., Guillermo, A.C., Troetti, S.E., Jabado, O.J., Fanning, M.L., Stefanovic, D., Macdonald, J.: Visual displays that directly interface and provide read-outs of molecular states via molecular graphics processing units. Angew. Chem. Int. Ed. 53(35), 9222–9225 (2014)CrossRef
87.
Zurück zum Zitat Purtha, W.E., Coppins, R.L., Smalley, M.K., Silverman, S.K.: General deoxyribozyme-catalyzed synthesis of native 3’-5’ RNA linkages. J. Am. Chem. Soc. 127, 13124–13125 (2005). doi:10.1021/ja0533702 CrossRef Purtha, W.E., Coppins, R.L., Smalley, M.K., Silverman, S.K.: General deoxyribozyme-catalyzed synthesis of native 3’-5’ RNA linkages. J. Am. Chem. Soc. 127, 13124–13125 (2005). doi:10.​1021/​ja0533702 CrossRef
88.
Zurück zum Zitat Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) Proceedings of the 16th International Conference on DNA Computing and Molecular Programming, Lecture Notes in Computer Science, vol. 6518, pp. 123–140. Springer, New York (2011) Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) Proceedings of the 16th International Conference on DNA Computing and Molecular Programming, Lecture Notes in Computer Science, vol. 6518, pp. 123–140. Springer, New York (2011)
90.
Zurück zum Zitat Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S. (eds.) Proceedings of the 20th International Conference on DNA Computing and Molecular Programming, Lecture Notes in Computer Science, vol. 8727, pp. 114–131. Springer, New York (2014) Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S. (eds.) Proceedings of the 20th International Conference on DNA Computing and Molecular Programming, Lecture Notes in Computer Science, vol. 8727, pp. 114–131. Springer, New York (2014)
92.
Zurück zum Zitat Robertson, M.P., Ellington, A.: In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechol. 17(1), 62–66 (1999)CrossRef Robertson, M.P., Ellington, A.: In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechol. 17(1), 62–66 (1999)CrossRef
93.
Zurück zum Zitat Santoro, S.W., Joyce, G.F.: A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U.S. Am. 94, 4262–4266 (1997)CrossRef Santoro, S.W., Joyce, G.F.: A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U.S. Am. 94, 4262–4266 (1997)CrossRef
94.
Zurück zum Zitat Saunders, M.J., Edwards, B.S., Zhu, J., Sklar, L.A., Graves, S.W.: Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. In: Robinson, J.P. (ed.) Current Protocols in Cytometry Unit 13.12. Wiley, Hoboken (2010). doi:10.1002/0471142956.cy1312s54 Saunders, M.J., Edwards, B.S., Zhu, J., Sklar, L.A., Graves, S.W.: Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. In: Robinson, J.P. (ed.) Current Protocols in Cytometry Unit 13.12. Wiley, Hoboken (2010). doi:10.​1002/​0471142956.​cy1312s54
95.
Zurück zum Zitat Schaeffer, H.J., Weber, M.J.: Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19(4), 2435–2444 (1999)CrossRef Schaeffer, H.J., Weber, M.J.: Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19(4), 2435–2444 (1999)CrossRef
98.
Zurück zum Zitat Silverman, S.K.: Deoxyribozymes: DNA catalysts for bioorganic chemistry. Organ. Biomol. Chem. 2, 2701–2706 (2004)CrossRef Silverman, S.K.: Deoxyribozymes: DNA catalysts for bioorganic chemistry. Organ. Biomol. Chem. 2, 2701–2706 (2004)CrossRef
99.
Zurück zum Zitat Silverman, S.K.: Catalytic DNA (deoxyribozymes) for synthetic applications—current abilities and future prospects. Chem. Commun. pp. 3467–3485 (2008). doi:10.1039/b807292m Silverman, S.K.: Catalytic DNA (deoxyribozymes) for synthetic applications—current abilities and future prospects. Chem. Commun. pp. 3467–3485 (2008). doi:10.​1039/​b807292m
100.
Zurück zum Zitat Simmons, C.P., Farrar, J.J., van Vin Chau, N., Wills, B.: Dengue. New Engl. J. Med. 366, 1423–1432 (2012) Simmons, C.P., Farrar, J.J., van Vin Chau, N., Wills, B.: Dengue. New Engl. J. Med. 366, 1423–1432 (2012)
102.
Zurück zum Zitat Stefanovic, D., Stojanovic, M.N.: Computing game strategies. In: Computability in Europe: The Nature of Computation, pp. 383–392. Milano (2013) Stefanovic, D., Stojanovic, M.N.: Computing game strategies. In: Computability in Europe: The Nature of Computation, pp. 383–392. Milano (2013)
103.
Zurück zum Zitat Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002)CrossRef Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002)CrossRef
104.
Zurück zum Zitat Stojanovic, M.N., de Prada, P., Landry, D.W.: Catalytic molecular beacons. ChemBioChem 2, 411–415 (2001)CrossRef Stojanovic, M.N., de Prada, P., Landry, D.W.: Catalytic molecular beacons. ChemBioChem 2, 411–415 (2001)CrossRef
105.
Zurück zum Zitat Stojanovic, M.N., Semova, S., Kolpashchikov, D., Macdonald, J., Morgan, C., Stefanovic, D.: Deoxyribozyme-based ligase logic gates and their initial circuits. J. Am. Chem. Soc. 127, 6914–6915 (2005). doi:10.1021/ja043003a CrossRef Stojanovic, M.N., Semova, S., Kolpashchikov, D., Macdonald, J., Morgan, C., Stefanovic, D.: Deoxyribozyme-based ligase logic gates and their initial circuits. J. Am. Chem. Soc. 127, 6914–6915 (2005). doi:10.​1021/​ja043003a CrossRef
106.
Zurück zum Zitat Stojanovic, M.N., Stefanovic, D.: Deoxyribozyme-based half adder. J. Am. Chem. Soc. 125(22), 6673–6676 (2003)CrossRef Stojanovic, M.N., Stefanovic, D.: Deoxyribozyme-based half adder. J. Am. Chem. Soc. 125(22), 6673–6676 (2003)CrossRef
107.
Zurück zum Zitat Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21(9), 1069–1074 (2003)CrossRef Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21(9), 1069–1074 (2003)CrossRef
108.
Zurück zum Zitat Stojanovic, M.N., Stefanovic, D., Rudchenko, S.: Exercises in molecular computing. Acc. Chem. Res. 47, 1845–1852 (2014)CrossRef Stojanovic, M.N., Stefanovic, D., Rudchenko, S.: Exercises in molecular computing. Acc. Chem. Res. 47, 1845–1852 (2014)CrossRef
109.
Zurück zum Zitat Tabor, J.J., Levy, M., Ellington, A.D.: Deoxyribozymes that recode sequence information. Nucleic Acid. Res. 34, 2166–2172 (2006)CrossRef Tabor, J.J., Levy, M., Ellington, A.D.: Deoxyribozymes that recode sequence information. Nucleic Acid. Res. 34, 2166–2172 (2006)CrossRef
110.
Zurück zum Zitat Tang, J., Breaker, R.R.: Rational design of allosteric ribozymes. Chem. Biol. 4(6), 453–459 (1997)CrossRef Tang, J., Breaker, R.R.: Rational design of allosteric ribozymes. Chem. Biol. 4(6), 453–459 (1997)CrossRef
111.
Zurück zum Zitat Teichmann, M., Kopperger, E., Simmel, F.C.: Robustness of localized DNA strand displacement cascades. ACS Nano 8(8), 8487–8496 (2014)CrossRef Teichmann, M., Kopperger, E., Simmel, F.C.: Robustness of localized DNA strand displacement cascades. ACS Nano 8(8), 8487–8496 (2014)CrossRef
112.
Zurück zum Zitat Teller, C., Shimron, S., Willner, I.: Aptamer-DNAzyme hairpins for amplified biosensing. Anal. Chem. 81, 9114–9119 (2009)CrossRef Teller, C., Shimron, S., Willner, I.: Aptamer-DNAzyme hairpins for amplified biosensing. Anal. Chem. 81, 9114–9119 (2009)CrossRef
113.
114.
Zurück zum Zitat Tram, K., Kanda, P., Salena, B.J., Huan, S., Li, Y.: Translating bacterial detection by DNAzymes into a litmus test. Angew. Chem. Int. Ed. 53(47), 12799–12802 (2014). doi:10.1002/anie.201407021 Tram, K., Kanda, P., Salena, B.J., Huan, S., Li, Y.: Translating bacterial detection by DNAzymes into a litmus test. Angew. Chem. Int. Ed. 53(47), 12799–12802 (2014). doi:10.​1002/​anie.​201407021
115.
Zurück zum Zitat Tyagi, S., Kramer, F.R.: Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14(3), 303–309 (1996)CrossRef Tyagi, S., Kramer, F.R.: Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14(3), 303–309 (1996)CrossRef
116.
Zurück zum Zitat Vaidya, N., Manapat, M.L., Chen, I.A., Xulvi-Brunet, R., Hayden, E.J., Lehman, N.: Spontaneous network formation among cooperative RNA replicators. Nature 491, 72–77 (2012). doi:10.1038/nature11549 CrossRef Vaidya, N., Manapat, M.L., Chen, I.A., Xulvi-Brunet, R., Hayden, E.J., Lehman, N.: Spontaneous network formation among cooperative RNA replicators. Nature 491, 72–77 (2012). doi:10.​1038/​nature11549 CrossRef
118.
Zurück zum Zitat Wang, F., Elbaz, J., Orbach, R., Magen, N., Willner, I.: Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J. Am. Chem. Soc. 133, 17149–17151 (2011)CrossRef Wang, F., Elbaz, J., Orbach, R., Magen, N., Willner, I.: Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J. Am. Chem. Soc. 133, 17149–17151 (2011)CrossRef
119.
Zurück zum Zitat Wang, F., Elbaz, J., Teller, C., Willner, I.: Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process. Angew. Chem. Int. Ed. 50, 295–299 (2011)CrossRef Wang, F., Elbaz, J., Teller, C., Willner, I.: Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process. Angew. Chem. Int. Ed. 50, 295–299 (2011)CrossRef
120.
Zurück zum Zitat Wang, F., Elbaz, J., Willner, I.: Enzyme-free amplified detection of DNA by an autonomous ligation DNAzyme machinery. J. Am. Chem. Soc. 134, 5504–5507 (2012) Wang, F., Elbaz, J., Willner, I.: Enzyme-free amplified detection of DNA by an autonomous ligation DNAzyme machinery. J. Am. Chem. Soc. 134, 5504–5507 (2012)
121.
Zurück zum Zitat Wang, F., Lu, C.H., Willner, I.: From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014). doi:10.1021/cr400354z CrossRef Wang, F., Lu, C.H., Willner, I.: From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014). doi:10.​1021/​cr400354z CrossRef
123.
Zurück zum Zitat Wang, Z., Lee, J.H., Lu, Y.: Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater. 20(17), 3263–3267 (2008)CrossRef Wang, Z., Lee, J.H., Lu, Y.: Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater. 20(17), 3263–3267 (2008)CrossRef
125.
Zurück zum Zitat Wolfe, B.R., Pierce, N.A.: Sequence design for a test tube of interacting nucleic acid strands. ACS Synth. Biol. 4(10), 1086–1100 (2015). doi:10.1021/sb5002196 Wolfe, B.R., Pierce, N.A.: Sequence design for a test tube of interacting nucleic acid strands. ACS Synth. Biol. 4(10), 1086–1100 (2015). doi:10.​1021/​sb5002196
126.
Zurück zum Zitat Wu, P., Hwang, K., Lan, T., Lu, Y.: A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc. 135, 5254–5257 (2013). doi:10.1021/ja400150v CrossRef Wu, P., Hwang, K., Lan, T., Lu, Y.: A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc. 135, 5254–5257 (2013). doi:10.​1021/​ja400150v CrossRef
127.
128.
Zurück zum Zitat Xiang, Y., Lu, Y.: Expanding targets of DNAzyme-based sensors through deactivation and activation of DNAzymes by single uracil removal: Sensitive fluorescent assay of uracil-DNA glycosylase. Anal. Chem. 84, 9981–9987 (2012). doi:10.1021/ac302424f CrossRef Xiang, Y., Lu, Y.: Expanding targets of DNAzyme-based sensors through deactivation and activation of DNAzymes by single uracil removal: Sensitive fluorescent assay of uracil-DNA glycosylase. Anal. Chem. 84, 9981–9987 (2012). doi:10.​1021/​ac302424f CrossRef
129.
Zurück zum Zitat Xiang, Y., Wang, Z., Xing, H., Lu, Y.: Expanding DNAzyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directed assembly of nanomaterials. Chem. Sci. 4, 398–404 (2013). doi:10.1039/c2sc20763j CrossRef Xiang, Y., Wang, Z., Xing, H., Lu, Y.: Expanding DNAzyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directed assembly of nanomaterials. Chem. Sci. 4, 398–404 (2013). doi:10.​1039/​c2sc20763j CrossRef
130.
Zurück zum Zitat Xiang, Y., Wu, P., Tan, L.H., Lu, Y.: DNAzyme-functionalized gold nanoparticles for biosensing. In: Gu, M.B., Kim, H.S. (eds.) Biosensors Based on Aptamers and Enzymes, Advances in Biochemical Engineering/Biotechnology, vol. 140, pp. 93–120. Springer, New York (2014) Xiang, Y., Wu, P., Tan, L.H., Lu, Y.: DNAzyme-functionalized gold nanoparticles for biosensing. In: Gu, M.B., Kim, H.S. (eds.) Biosensors Based on Aptamers and Enzymes, Advances in Biochemical Engineering/Biotechnology, vol. 140, pp. 93–120. Springer, New York (2014)
131.
Zurück zum Zitat Xiao, Y., Wehrmann, R.J., Ibrahim, N.A., Silverman, S.K.: Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA. Nucleic Acid. Res. 40(4), 1778–1786 (2012). doi:10.1093/nar/gkr860 CrossRef Xiao, Y., Wehrmann, R.J., Ibrahim, N.A., Silverman, S.K.: Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA. Nucleic Acid. Res. 40(4), 1778–1786 (2012). doi:10.​1093/​nar/​gkr860 CrossRef
132.
Zurück zum Zitat Yashin, R., Rudchenko, S., Stojanovic, M.N.: Networking particles over distance using oligonucleotide-based devices. J. Am. Chem. Soc. 129(50), 15581–15584 (2007)CrossRef Yashin, R., Rudchenko, S., Stojanovic, M.N.: Networking particles over distance using oligonucleotide-based devices. J. Am. Chem. Soc. 129(50), 15581–15584 (2007)CrossRef
134.
Zurück zum Zitat Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000). doi:10.1038/35020524 CrossRef Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000). doi:10.​1038/​35020524 CrossRef
135.
Zurück zum Zitat Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M., Pierce, N.A.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011) Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M., Pierce, N.A.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011)
136.
Zurück zum Zitat Zadeh, J.N., Wolfe, B.R., Pierce, N.A.: Nucleic acid sequence design via efficient ensemble defect optimization. J. Comput. Chem. 32, 439–452 (2011)CrossRef Zadeh, J.N., Wolfe, B.R., Pierce, N.A.: Nucleic acid sequence design via efficient ensemble defect optimization. J. Comput. Chem. 32, 439–452 (2011)CrossRef
137.
Zurück zum Zitat Zenisek, S.F.M., Hayden, E.J., Lehman, N.: Genetic exchange leading to self-assembling RNA species upon encapsulation in artificial protocells. Artif. Life 13(3), 279–289 (2007). doi:10.1162/artl.2007.13.3.279 Zenisek, S.F.M., Hayden, E.J., Lehman, N.: Genetic exchange leading to self-assembling RNA species upon encapsulation in artificial protocells. Artif. Life 13(3), 279–289 (2007). doi:10.​1162/​artl.​2007.​13.​3.​279
140.
Zurück zum Zitat Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)CrossRef Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)CrossRef
141.
Zurück zum Zitat Zhang, X.B., Kong, R.M., Lu, Y.: Metal ion sensors based on DNAzymes and related DNA molecules. Annu. Rev. Anal. Chem. 4, 105–128 (2011)CrossRef Zhang, X.B., Kong, R.M., Lu, Y.: Metal ion sensors based on DNAzymes and related DNA molecules. Annu. Rev. Anal. Chem. 4, 105–128 (2011)CrossRef
Metadaten
Titel
Implementing Molecular Logic Gates, Circuits, and Cascades Using DNAzymes
verfasst von
Matthew R. Lakin
Milan N. Stojanovic
Darko Stefanovic
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-33921-4_1