Skip to main content

2016 | OriginalPaper | Buchkapitel

10. Implications

verfasst von : Francisco J. Valero-Cuevas

Erschienen in: Fundamentals of Neuromechanics

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This book is deliberately a short introduction to the mathematical and anatomical foundations of neuromechanics. My hope is that you will take these concepts and challenge, modify, extend, and leverage them to advance the science of neuromuscular control and its related areas, such as robotics, musculoskeletal modeling, computational neuroscience, rehabilitation, and evolutionary biology. Having established a common language, conceptual framework, and computational repertoire, I discuss several implications of this neuromechanical perspective. My intent is that my presentation of several issues, research directions, tenets, and debates, however brief, will inspire and encourage you in your research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Very rarely do we find 2 muscles with identical lines of action and functional capabilities. I can think of the extensor indicis proprius and the slip of the extensor digitorum communis to the index finger as a potential example because they share the same tendon of insertion. But given the lack of strict independence of the muscle fibers of the latter muscle, perhaps the former muscle is needed to enforce functional independence of the index finger.
 
2
Model predictive control, or MPC, is a computationally intensive approach that solves multiple versions of the problem for a short time horizon into the future at each time step. It then uses cost and value functions to pick from among the multiple, most successful branches to assemble families of acceptable full trajectories to solve the problem.
 
3
In areas such as numerical analysis, optimization, sampling, combinatorics, machine learning, data mining, etc., as the dimensionality of the variables increases, the volume of the space increases so fast that available data become sparse. Thus the amount of data needed to obtain statistically sound and reliable results often grows exponentially with the dimensionality, rendering the problem impractical.
 
Literatur
1.
Zurück zum Zitat N.A. Bernstein, The Co-ordination and Regulation of Movements (Pergamon Press, New York, 1967) N.A. Bernstein, The Co-ordination and Regulation of Movements (Pergamon Press, New York, 1967)
2.
Zurück zum Zitat J.J. Kutch, F.J. Valero-Cuevas, Muscle redundancy does not imply robustness to muscle dysfunction. J. Biomech. 44(7), 1264–1270 (2011)CrossRef J.J. Kutch, F.J. Valero-Cuevas, Muscle redundancy does not imply robustness to muscle dysfunction. J. Biomech. 44(7), 1264–1270 (2011)CrossRef
3.
Zurück zum Zitat M.L. Latash, The bliss (not the problem) of motor abundance (not redundancy). Exp. Brain Res. 217(1), 1–5 (2012) M.L. Latash, The bliss (not the problem) of motor abundance (not redundancy). Exp. Brain Res. 217(1), 1–5 (2012)
4.
Zurück zum Zitat G.E. Loeb, Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000) G.E. Loeb, Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000)
5.
Zurück zum Zitat K.G. Keenan, V.J. Santos, M. Venkadesan, F.J. Valero-Cuevas, Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks. J. Neurosci. 29, 8784–8789 (2009)CrossRef K.G. Keenan, V.J. Santos, M. Venkadesan, F.J. Valero-Cuevas, Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks. J. Neurosci. 29, 8784–8789 (2009)CrossRef
6.
Zurück zum Zitat F.J. Valero-Cuevas, F.E. Zajac, C.G. Burgar, Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31, 693–703 (1998)CrossRef F.J. Valero-Cuevas, F.E. Zajac, C.G. Burgar, Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31, 693–703 (1998)CrossRef
7.
Zurück zum Zitat F.J. Valero-Cuevas, H. Hoffmann, M.U. Kurse, J.J. Kutch, E.A. Theodorou, Computational models for neuromuscular function. IEEE Rev. Biomed. Eng. 2, 110–135 (2009) F.J. Valero-Cuevas, H. Hoffmann, M.U. Kurse, J.J. Kutch, E.A. Theodorou, Computational models for neuromuscular function. IEEE Rev. Biomed. Eng. 2, 110–135 (2009)
8.
Zurück zum Zitat R. Shadmehr, S. Mussa-Ivaldi, Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions (MIT Press, Cambridge, 2012) R. Shadmehr, S. Mussa-Ivaldi, Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions (MIT Press, Cambridge, 2012)
9.
Zurück zum Zitat E. Todorov, M.I. Jordan, Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)CrossRef E. Todorov, M.I. Jordan, Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)CrossRef
10.
Zurück zum Zitat E. Theodorou, E. Todorov, F.J. Valero-Cuevas, Neuromuscular stochastic optimal control of a tendon driven index finger model, in 2011 American Control Conference (ACC) (IEEE, 2011), pp. 348–355 E. Theodorou, E. Todorov, F.J. Valero-Cuevas, Neuromuscular stochastic optimal control of a tendon driven index finger model, in 2011 American Control Conference (ACC) (IEEE, 2011), pp. 348–355
11.
Zurück zum Zitat E. Theodorou, F.J. Valero-Cuevas, Optimality in neuromuscular systems, in 2010 IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) (IEEE, 2010), pp. 4510–4516 E. Theodorou, F.J. Valero-Cuevas, Optimality in neuromuscular systems, in 2010 IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) (IEEE, 2010), pp. 4510–4516
12.
Zurück zum Zitat V. Kumar, Y. Tassa, T. Erez, E. Todorov, Real-time behaviour synthesis fordynamic hand-manipulation, in 2014 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2014), pp. 6808–6815 V. Kumar, Y. Tassa, T. Erez, E. Todorov, Real-time behaviour synthesis fordynamic hand-manipulation, in 2014 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2014), pp. 6808–6815
13.
Zurück zum Zitat M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, S. Schaal, Learning, planning, and control for quadruped locomotion over challenging terrain. Int. J. Robot. Res. 30(2), 236–258 (2011) M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, S. Schaal, Learning, planning, and control for quadruped locomotion over challenging terrain. Int. J. Robot. Res. 30(2), 236–258 (2011)
14.
Zurück zum Zitat E. Theodorou, J. Buchli, S. Schaal, A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010) E. Theodorou, J. Buchli, S. Schaal, A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010)
16.
Zurück zum Zitat A.D. Kuo, F.E. Zajac, Human standing posture: multi-joint movement strategies based on biomechanical constraints. Prog. Brain Res. 97, 349–358 (1993)CrossRef A.D. Kuo, F.E. Zajac, Human standing posture: multi-joint movement strategies based on biomechanical constraints. Prog. Brain Res. 97, 349–358 (1993)CrossRef
17.
Zurück zum Zitat F.J. Cole et al. A History of Comparative Anatomy from Aristotle to the Eighteenth Century (Macmillan Publisher, London, 1944) F.J. Cole et al. A History of Comparative Anatomy from Aristotle to the Eighteenth Century (Macmillan Publisher, London, 1944)
18.
Zurück zum Zitat A. Vesalius, De Humani Corporis Fabrica Libri Septem (Ex officina I. Oporini, Basileae, 1543) A. Vesalius, De Humani Corporis Fabrica Libri Septem (Ex officina I. Oporini, Basileae, 1543)
19.
Zurück zum Zitat R. Van Rijn, The Anatomy Lesson of Dr. Nicolaes Tulp (1632) R. Van Rijn, The Anatomy Lesson of Dr. Nicolaes Tulp (1632)
20.
Zurück zum Zitat F.J. Valero-Cuevas, C.F. Small, Load dependence in carpal kinematics during wrist flexion in vivo. Clin. Biomech. 12, 154–159 (1997)CrossRef F.J. Valero-Cuevas, C.F. Small, Load dependence in carpal kinematics during wrist flexion in vivo. Clin. Biomech. 12, 154–159 (1997)CrossRef
21.
Zurück zum Zitat H. van Duinen, S.C. Gandevia, Constraints for control of the human hand. J. Physiol. 589(23), 5583–5593 (2011)CrossRef H. van Duinen, S.C. Gandevia, Constraints for control of the human hand. J. Physiol. 589(23), 5583–5593 (2011)CrossRef
22.
Zurück zum Zitat C.E. Wall, A model of temporomandibular joint function in anthropoid primates basedon condylar movements during mastication. Am. J. Phys. Anthropol. 109(1), 67–88 (1999)CrossRef C.E. Wall, A model of temporomandibular joint function in anthropoid primates basedon condylar movements during mastication. Am. J. Phys. Anthropol. 109(1), 67–88 (1999)CrossRef
23.
Zurück zum Zitat F.J. Valero-Cuevas, Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. J. Neurophysiol. 83(3), 1469–1479 (2000) F.J. Valero-Cuevas, Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. J. Neurophysiol. 83(3), 1469–1479 (2000)
24.
Zurück zum Zitat F.J. Valero-Cuevas, J.D. Towles, V.R. Hentz, Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic muscles, J. Biomech. 33, 1601–1609 (2000) F.J. Valero-Cuevas, J.D. Towles, V.R. Hentz, Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic muscles, J. Biomech. 33, 1601–1609 (2000)
25.
Zurück zum Zitat L. Gregoire, H.E. Veeger, P.A. Huijing, S.G.J. van Ingen, Role of mono-and biarticular muscles in explosive movements. Int. J. Sport. Med. 5(6):301–305, (1984) L. Gregoire, H.E. Veeger, P.A. Huijing, S.G.J. van Ingen, Role of mono-and biarticular muscles in explosive movements. Int. J. Sport. Med. 5(6):301–305, (1984)
26.
Zurück zum Zitat J.M. Inouye, F.J. Valero-Cuevas, Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization. Int. J. Robot. Res. (2013) J.M. Inouye, F.J. Valero-Cuevas, Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization. Int. J. Robot. Res. (2013)
27.
Zurück zum Zitat F.J. Valero-Cuevas, J.W. Yi, D. Brown, R.V. McNamara, C. Paul, H. Lipson, The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans. Biomed. Eng. 54, 1161–1166 (2007)CrossRef F.J. Valero-Cuevas, J.W. Yi, D. Brown, R.V. McNamara, C. Paul, H. Lipson, The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans. Biomed. Eng. 54, 1161–1166 (2007)CrossRef
28.
Zurück zum Zitat V.S. Chib, M.A Krutky, K.M. Lynch, F.A. Mussa-Ivaldi, The separate neural control of hand movements and contact forces. J. Neurosci. 29(12), 3939–3947 (2009) V.S. Chib, M.A Krutky, K.M. Lynch, F.A. Mussa-Ivaldi, The separate neural control of hand movements and contact forces. J. Neurosci. 29(12), 3939–3947 (2009)
29.
Zurück zum Zitat R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Florida, 1994) R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Florida, 1994)
30.
Zurück zum Zitat V. Squeri, L. Masia, M. Casadio, P. Morasso, E. Vergaro, Force-field compensation in a manual tracking task. PLoS One 5(6), e11189 (2010) V. Squeri, L. Masia, M. Casadio, P. Morasso, E. Vergaro, Force-field compensation in a manual tracking task. PLoS One 5(6), e11189 (2010)
31.
Zurück zum Zitat M. Venkadesan, F.J. Valero-Cuevas, Neural control of motion-to-force transitions with the fingertip. J. Neurosci. 28, 1366–1373 (2008)CrossRef M. Venkadesan, F.J. Valero-Cuevas, Neural control of motion-to-force transitions with the fingertip. J. Neurosci. 28, 1366–1373 (2008)CrossRef
32.
Zurück zum Zitat T. Yoshikawa, Foundations of Robotics: Analysis and Control (MIT Press, Cambridge, 1990) T. Yoshikawa, Foundations of Robotics: Analysis and Control (MIT Press, Cambridge, 1990)
33.
Zurück zum Zitat N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29(8), 681–690 (1984)MATHCrossRef N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29(8), 681–690 (1984)MATHCrossRef
34.
Zurück zum Zitat E.R. Kearney, I.W. Hunter, System identification of human joint dynamics. Crit. Rev. Biomed. Eng. 18(1), 55–87 (1989) E.R. Kearney, I.W. Hunter, System identification of human joint dynamics. Crit. Rev. Biomed. Eng. 18(1), 55–87 (1989)
35.
Zurück zum Zitat J.M. Lanman, Movement and the mechanical properties of the intact human elbow joint. Ph.D. thesis, Massachusetts Institute of Technology (1980) J.M. Lanman, Movement and the mechanical properties of the intact human elbow joint. Ph.D. thesis, Massachusetts Institute of Technology (1980)
36.
Zurück zum Zitat G.I. Zahalak, S.J. Heyman, A quantitative evaluation of the frequency-response characteristics of active human skeletal muscle in vivo. J. Biomech. Eng. 101(1), 28–37 (1979) G.I. Zahalak, S.J. Heyman, A quantitative evaluation of the frequency-response characteristics of active human skeletal muscle in vivo. J. Biomech. Eng. 101(1), 28–37 (1979)
37.
Zurück zum Zitat E. Burdet, R. Osu, D.W. Franklin, T.E. Milner, M. Kawato, The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)CrossRef E. Burdet, R. Osu, D.W. Franklin, T.E. Milner, M. Kawato, The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)CrossRef
38.
Zurück zum Zitat E. Burdet, R. Osu, D.W. Franklin, T. Yoshioka, T.E. Milner, M. Kawato, A method for measuring endpoint stiffness during multi-joint arm movements. J. Biomech. 33(12), 1705–1709 (2000)CrossRef E. Burdet, R. Osu, D.W. Franklin, T. Yoshioka, T.E. Milner, M. Kawato, A method for measuring endpoint stiffness during multi-joint arm movements. J. Biomech. 33(12), 1705–1709 (2000)CrossRef
39.
Zurück zum Zitat M. Darainy, N. Malfait, P.L. Gribble, F. Towhidkhah, D.J. Ostry, Learning to control arm stiffness under static conditions. J. Neurophysiol. 92(6), 3344 (2004)CrossRef M. Darainy, N. Malfait, P.L. Gribble, F. Towhidkhah, D.J. Ostry, Learning to control arm stiffness under static conditions. J. Neurophysiol. 92(6), 3344 (2004)CrossRef
40.
Zurück zum Zitat T. Flash, F. Mussa-Ivaldi, Human arm stiffness characteristics during the maintenance of posture. Exp. Brain Res. 82(2), 315–326 (1990)CrossRef T. Flash, F. Mussa-Ivaldi, Human arm stiffness characteristics during the maintenance of posture. Exp. Brain Res. 82(2), 315–326 (1990)CrossRef
41.
Zurück zum Zitat D.W. Franklin, G. Liaw, T.E. Milner, R. Osu, E. Burdet, M. Kawato, Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 27(29), 7705–7716 (2007)CrossRef D.W. Franklin, G. Liaw, T.E. Milner, R. Osu, E. Burdet, M. Kawato, Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 27(29), 7705–7716 (2007)CrossRef
42.
Zurück zum Zitat D.W. Franklin, U. So, M. Kawato, T.E. Milner, Impedance control balances stability with metabolically costly muscle activation. J. Neurophysiol. 92(5), 3097 (2004)CrossRef D.W. Franklin, U. So, M. Kawato, T.E. Milner, Impedance control balances stability with metabolically costly muscle activation. J. Neurophysiol. 92(5), 3097 (2004)CrossRef
43.
Zurück zum Zitat H. Gomi, R. Osu, Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J. Neurosci. 18(21), 8965–8978 (1998) H. Gomi, R. Osu, Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J. Neurosci. 18(21), 8965–8978 (1998)
44.
Zurück zum Zitat N. Hogan, Impedance control: an approach to manipulation, in American Control Conference (IEEE, 1984), pp. 304–313 N. Hogan, Impedance control: an approach to manipulation, in American Control Conference (IEEE, 1984), pp. 304–313
46.
Zurück zum Zitat X. Hu, W.M. Murray, E.J. Perreault, Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm. J. Neurophysiol. 105(4), 1633–1641 (2011)CrossRef X. Hu, W.M. Murray, E.J. Perreault, Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm. J. Neurophysiol. 105(4), 1633–1641 (2011)CrossRef
47.
Zurück zum Zitat H.U. Xiao, W.M. Murray, E.J. Perreault, Biomechanical constraints on the feedforward regulation of endpoint stiffness. J. Neurophysiol. 108(8), 2083–2091 (2012) H.U. Xiao, W.M. Murray, E.J. Perreault, Biomechanical constraints on the feedforward regulation of endpoint stiffness. J. Neurophysiol. 108(8), 2083–2091 (2012)
48.
Zurück zum Zitat A. Kadiallah, G. Liaw, M. Kawato, D.W. Franklin, E. Burdet. Impedance control is selectively tuned to multiple directions of movement. J. Neurophysiol A. Kadiallah, G. Liaw, M. Kawato, D.W. Franklin, E. Burdet. Impedance control is selectively tuned to multiple directions of movement. J. Neurophysiol
49.
Zurück zum Zitat J. McIntyre, F.A. Mussa-Ivaldi, E. Bizzi, The control of stable postures in the multijoint arm. Exp. Brain Res. 110(2), 248–264 (1996)CrossRef J. McIntyre, F.A. Mussa-Ivaldi, E. Bizzi, The control of stable postures in the multijoint arm. Exp. Brain Res. 110(2), 248–264 (1996)CrossRef
50.
Zurück zum Zitat T.E. Milner, Contribution of geometry and joint stiffness to mechanical stability of the human arm. Exp. Brain Res. 143(4), 515–519 (2002)CrossRef T.E. Milner, Contribution of geometry and joint stiffness to mechanical stability of the human arm. Exp. Brain Res. 143(4), 515–519 (2002)CrossRef
51.
Zurück zum Zitat F.A. Mussa-Ivaldi, N. Hogan, E. Bizzi, Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5(10), 2732 (1985) F.A. Mussa-Ivaldi, N. Hogan, E. Bizzi, Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5(10), 2732 (1985)
52.
Zurück zum Zitat R. Osu, H. Gomi, Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. J. Neurophysiol. 81(4), 1458 (1999) R. Osu, H. Gomi, Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. J. Neurophysiol. 81(4), 1458 (1999)
53.
Zurück zum Zitat E.J. Perreault, R.F. Kirsch, P.E. Crago, Effects of voluntary force generation on the elastic components of endpoint stiffness. Exp. Brain Res. (Experimentelle Hirnforschung Experimentation cerebrale) 141(3), 312, (2001) E.J. Perreault, R.F. Kirsch, P.E. Crago, Effects of voluntary force generation on the elastic components of endpoint stiffness. Exp. Brain Res. (Experimentelle Hirnforschung Experimentation cerebrale) 141(3), 312, (2001)
54.
Zurück zum Zitat E.J. Perreault, R.F. Kirsch, P.E. Crago, Voluntary control of static endpoint stiffness during force regulation tasks. J. Neurophysiol. 87(6), 2808 (2002) E.J. Perreault, R.F. Kirsch, P.E. Crago, Voluntary control of static endpoint stiffness during force regulation tasks. J. Neurophysiol. 87(6), 2808 (2002)
55.
Zurück zum Zitat D. Shin, J. Kim, Y. Koike, A myokinetic arm model for estimating joint torque and stiffness from EMG signals during maintained posture. J. Neurophysiol. 101(1), 387–401 (2009)CrossRef D. Shin, J. Kim, Y. Koike, A myokinetic arm model for estimating joint torque and stiffness from EMG signals during maintained posture. J. Neurophysiol. 101(1), 387–401 (2009)CrossRef
56.
Zurück zum Zitat S. Stroeve, Impedance characteristics of a neuromusculoskeletal model of the human arm i. Posture control. Biol. Cybern. 81(5), 475–494 (1999)MATHCrossRef S. Stroeve, Impedance characteristics of a neuromusculoskeletal model of the human arm i. Posture control. Biol. Cybern. 81(5), 475–494 (1999)MATHCrossRef
57.
Zurück zum Zitat K.P. Tee, D.W. Franklin, M. Kawato, T.E. Milner, E. Burdet, Concurrent adaptation of force and impedance in the redundant muscle system. Biol. Cybern. 102(1), 31–44 (2010) K.P. Tee, D.W. Franklin, M. Kawato, T.E. Milner, E. Burdet, Concurrent adaptation of force and impedance in the redundant muscle system. Biol. Cybern. 102(1), 31–44 (2010)
58.
Zurück zum Zitat J.M. Inouye, F.J. Valero-Cuevas, A novel computational approach helps explain and reconcile conflicting experimental findings on the neural control of arm endpoint stiffness, in 2012 22nd Annual Society for the Neural Control of Movement Conference (Venice, Italy, 2012) J.M. Inouye, F.J. Valero-Cuevas, A novel computational approach helps explain and reconcile conflicting experimental findings on the neural control of arm endpoint stiffness, in 2012 22nd Annual Society for the Neural Control of Movement Conference (Venice, Italy, 2012)
59.
Zurück zum Zitat C. Tomberg, M.D. Caramia, Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 81(4), 319–322 (1991) C. Tomberg, M.D. Caramia, Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 81(4), 319–322 (1991)
60.
Zurück zum Zitat T.E. Milner, Adaptation to destabilizing dynamics by means of muscle cocontraction. Exp. Brain Res. 143(4), 406–416 (2002) T.E. Milner, Adaptation to destabilizing dynamics by means of muscle cocontraction. Exp. Brain Res. 143(4), 406–416 (2002)
61.
Zurück zum Zitat F.J. Valero-Cuevas, An integrative approach to the biomechanical function and neuromuscular control of the fingers. J. Biomech. 38, 673–684 (2005)CrossRef F.J. Valero-Cuevas, An integrative approach to the biomechanical function and neuromuscular control of the fingers. J. Biomech. 38, 673–684 (2005)CrossRef
62.
Zurück zum Zitat R. Balasubramanian, Y. Matsuoka, Biological stiffness control strategies for the anatomically correct testbed (act) hand, in 2008 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2008), pp. 737–742 R. Balasubramanian, Y. Matsuoka, Biological stiffness control strategies for the anatomically correct testbed (act) hand, in 2008 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2008), pp. 737–742
63.
Zurück zum Zitat J.J. Kutch, F.J. Valero-Cuevas, Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002434 (2012)CrossRef J.J. Kutch, F.J. Valero-Cuevas, Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002434 (2012)CrossRef
64.
Zurück zum Zitat M.K. Steele, M.C. Tresch, E.J. Perreault, Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses. J. Neurophysiol. 113(7), 2102–2113 (2015) M.K. Steele, M.C. Tresch, E.J. Perreault, Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses. J. Neurophysiol. 113(7), 2102–2113 (2015)
Metadaten
Titel
Implications
verfasst von
Francisco J. Valero-Cuevas
Copyright-Jahr
2016
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-6747-1_10

Neuer Inhalt