Skip to main content
Erschienen in: Applied Composite Materials 6/2022

16.09.2022

In-plane compression response of foam filled re-entrant auxetic structure

verfasst von: Xuke Lan, Guang Wu, Guangyan Huang

Erschienen in: Applied Composite Materials | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The in-plane compression response and energy absorption capacity of a new foam filled re-entrant honeycomb (FFRH) with negative Poisson’s ratio were investigated in this paper. Polyurethane foam filled aluminum alloy re-entrant honeycomb structures were fabricated though 3D printing method and pressure foaming method. The in-plane compression process and energy absorption properties under compression loading were studied experimentally and numerically, and a good agreement was observed between experimental results and numerical results. The comparison of experimental results of FFRH and ERH (empty re-entrant honeycomb) shows that, FFRH has a higher plateau stress and energy absorption capacity, and the auxetic behavior of re-entrant honeycomb causes a biaxial compression of the foam to form an enhanced compression resistance. The influence of compression velocity and foam filling mode on energy absorption were explored in details. With the increase of the compression velocity, the dominant factor of energy absorption transfer from the filled foam to the honeycomb structure. And it was discovered that foam filling modes have direct influence on deformation modes. Foam filling mode with the rule that all the surroundings of the empty cell are filled cells shows a higher specific energy absorption capacity. Our research provides a new method for designing auxetic structures, and the FFRH with light weight and high energy absorption can be used in aerospace and vehicles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Isaac, C.W., Ezekwem, C.: “A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability,“ Composite Structures, vol.257, Feb 1 Art. no. 113081. (2021) Isaac, C.W., Ezekwem, C.: “A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability,“ Composite Structures, vol.257, Feb 1 Art. no. 113081. (2021)
2.
Zurück zum Zitat Rasuo, B.: “23 - Damage tolerance and survivability of composite aircraft structures,“. In: Beaumont, P.W.R., Soutis, C., Hodzic, A. (eds.) Structural Integrity and Durability of Advanced Composites, pp. 641–657. Woodhead Publishing (2015) Rasuo, B.: “23 - Damage tolerance and survivability of composite aircraft structures,“. In: Beaumont, P.W.R., Soutis, C., Hodzic, A. (eds.) Structural Integrity and Durability of Advanced Composites, pp. 641–657. Woodhead Publishing (2015)
3.
Zurück zum Zitat Kreculj, D., Rasuo, B.: “7 - Impact damage modeling in laminated composite aircraft structures,“. In: Jawaid, M., Thariq, M. (eds.) Sustainable Composites for Aerospace Applications, pp. 125–153. Woodhead Publishing (2018) Kreculj, D., Rasuo, B.: “7 - Impact damage modeling in laminated composite aircraft structures,“. In: Jawaid, M., Thariq, M. (eds.) Sustainable Composites for Aerospace Applications, pp. 125–153. Woodhead Publishing (2018)
4.
Zurück zum Zitat Rasuo, B.: “An experimental methodology for evaluating survivability of an aeronautical construction from composite materials: An overview,“International Journal of Crashworthiness, vol. 12, no. 1, pp.9–15, 2007/01/01 2007. Rasuo, B.: “An experimental methodology for evaluating survivability of an aeronautical construction from composite materials: An overview,“International Journal of Crashworthiness, vol. 12, no. 1, pp.9–15, 2007/01/01 2007.
5.
Zurück zum Zitat Yang, W., Huang, R., Liu, J., Liu, J., Huang, W.: “Ballistic impact responses and failure mechanism of composite double-arrow auxetic structure,“Thin-Walled Structures, vol. 174, (2022) Yang, W., Huang, R., Liu, J., Liu, J., Huang, W.: “Ballistic impact responses and failure mechanism of composite double-arrow auxetic structure,“Thin-Walled Structures, vol. 174, (2022)
6.
Zurück zum Zitat Yan, J., et al.: “Ballistic characteristics of 3D-printed auxetic honeycomb sandwich panel using CFRP face sheet,“International Journal of Impact Engineering, vol. 164, (2022) Yan, J., et al.: “Ballistic characteristics of 3D-printed auxetic honeycomb sandwich panel using CFRP face sheet,“International Journal of Impact Engineering, vol. 164, (2022)
7.
Zurück zum Zitat Fang, J., Gao, Y., An, X., Sun, G., Chen, J., Li, Q.: Design of transversely-graded foam and wall thickness structures for crashworthiness criteria,. Compos. Part B: Eng. 92, 338–349 (2016)CrossRef Fang, J., Gao, Y., An, X., Sun, G., Chen, J., Li, Q.: Design of transversely-graded foam and wall thickness structures for crashworthiness criteria,. Compos. Part B: Eng. 92, 338–349 (2016)CrossRef
8.
Zurück zum Zitat Chen, J., et al.: “Energy absorption of foam-filled multi-cell composite panels under quasi-static compression,“. Compos. Part B: Eng. 153, 295–305 (2018)CrossRef Chen, J., et al.: “Energy absorption of foam-filled multi-cell composite panels under quasi-static compression,“. Compos. Part B: Eng. 153, 295–305 (2018)CrossRef
9.
Zurück zum Zitat Deng, Z., Wang, L., Yu, H.: Fabrication of honeycomb-patterned film using hyperbranched polyethylene-based copolymer,. Eur. Polymer J. 93, 428–435 (2017). 2017/08/01/CrossRef Deng, Z., Wang, L., Yu, H.: Fabrication of honeycomb-patterned film using hyperbranched polyethylene-based copolymer,. Eur. Polymer J. 93, 428–435 (2017). 2017/08/01/CrossRef
10.
Zurück zum Zitat Khosravani, M.R., Weinberg, K.: “Experimental investigations of the environmental effects on stability and integrity of composite sandwich T-joints,“ vol.48, no. 8, pp.753–759, (2017) Khosravani, M.R., Weinberg, K.: “Experimental investigations of the environmental effects on stability and integrity of composite sandwich T-joints,“ vol.48, no. 8, pp.753–759, (2017)
11.
Zurück zum Zitat Hanna, B., et al.: “Auxetic metamaterial optimisation for head impact mitigation in American football,“International Journal of Impact Engineering, vol. 157, (2021) Hanna, B., et al.: “Auxetic metamaterial optimisation for head impact mitigation in American football,“International Journal of Impact Engineering, vol. 157, (2021)
12.
Zurück zum Zitat Li, S., Guo, X., Liao, J., Li, Q., Sun, G.: “Crushing analysis and design optimization for foam-filled aluminum/CFRP hybrid tube against transverse impact,“Composites Part B: Engineering, vol. 196, (2020) Li, S., Guo, X., Liao, J., Li, Q., Sun, G.: “Crushing analysis and design optimization for foam-filled aluminum/CFRP hybrid tube against transverse impact,“Composites Part B: Engineering, vol. 196, (2020)
13.
Zurück zum Zitat Zhang, P., et al.: “Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading,“. Compos. Part B: Eng. 105, 67–81 (2016)CrossRef Zhang, P., et al.: “Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading,“. Compos. Part B: Eng. 105, 67–81 (2016)CrossRef
14.
Zurück zum Zitat Zhang, Y., Liu, Q., He, Z., Zong, Z., Fang, J.: Dynamic impact response of aluminum honeycombs filled with Expanded Polypropylene foam,. Compos. Part B: Eng. 156, 17–27 (2019)CrossRef Zhang, Y., Liu, Q., He, Z., Zong, Z., Fang, J.: Dynamic impact response of aluminum honeycombs filled with Expanded Polypropylene foam,. Compos. Part B: Eng. 156, 17–27 (2019)CrossRef
15.
Zurück zum Zitat Liang, M.Z., Lu, F.Y., Zhang, G.D., Li, X.Y.: Experimental and numerical study of aluminum foam-cored sandwich tubes subjected to internal air blast,. Compos. Part B-Engineering. 125, 134–143 (Sep 2017) Liang, M.Z., Lu, F.Y., Zhang, G.D., Li, X.Y.: Experimental and numerical study of aluminum foam-cored sandwich tubes subjected to internal air blast,. Compos. Part B-Engineering. 125, 134–143 (Sep 2017)
16.
Zurück zum Zitat Yan, L.L., Yu, B., Han, B., Zhang, Q.C., Lu, T.J., Lu, B.H.: Effects of aluminum foam filling on the low-velocity impact response of sandwich panels with corrugated cores,. J. Sandw. Struct. Mater. 22(4), 929–947 (May 2020) Yan, L.L., Yu, B., Han, B., Zhang, Q.C., Lu, T.J., Lu, B.H.: Effects of aluminum foam filling on the low-velocity impact response of sandwich panels with corrugated cores,. J. Sandw. Struct. Mater. 22(4), 929–947 (May 2020)
17.
Zurück zum Zitat Zhang, P., Liu, J., Cheng, Y., Hou, H., Wang, C., Li, Y.: “Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading – An experimental study,“ Materials & Design ( vol.65, pp.221–230, 2015. (1980) Zhang, P., Liu, J., Cheng, Y., Hou, H., Wang, C., Li, Y.: “Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading – An experimental study,“ Materials & Design ( vol.65, pp.221–230, 2015. (1980)
18.
Zurück zum Zitat Yazici, M., Wright, J., Bertin, D., Shukla, A.: Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading,. Compos. Struct. 110, 98–109 (2014)CrossRef Yazici, M., Wright, J., Bertin, D., Shukla, A.: Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading,. Compos. Struct. 110, 98–109 (2014)CrossRef
19.
Zurück zum Zitat Kelkar, P.U., Kim, H.S., Cho, K.H., Kwak, J.Y., Kang, C.Y., Song, H.C.: “Cellular Auxetic Structures for Mechanical Metamaterials: A Review,“ Sensors, vol.20, no. 11, Jun Art. no. 3132. (2020) Kelkar, P.U., Kim, H.S., Cho, K.H., Kwak, J.Y., Kang, C.Y., Song, H.C.: “Cellular Auxetic Structures for Mechanical Metamaterials: A Review,“ Sensors, vol.20, no. 11, Jun Art. no. 3132. (2020)
20.
Zurück zum Zitat Wang, H., Lu, Z., Yang, Z., Li, X.: “A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance,“. Compos. Struct. 208, 758–770 (2019)CrossRef Wang, H., Lu, Z., Yang, Z., Li, X.: “A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance,“. Compos. Struct. 208, 758–770 (2019)CrossRef
21.
Zurück zum Zitat Tan, H.L., He, Z.C., Li, K.X., Li, E., Cheng, A.G., Xu, B.: “In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio,“Composite Structures, vol. 229, (2019) Tan, H.L., He, Z.C., Li, K.X., Li, E., Cheng, A.G., Xu, B.: “In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio,“Composite Structures, vol. 229, (2019)
22.
Zurück zum Zitat Lan, X., Feng, S., Huang, Q., Zhou, T.: “A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores,“. Aerosp. Sci. Technol. 87, 37–47 (2019)CrossRef Lan, X., Feng, S., Huang, Q., Zhou, T.: “A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores,“. Aerosp. Sci. Technol. 87, 37–47 (2019)CrossRef
23.
Zurück zum Zitat Jin, X., Wang, Z., Ning, J., Xiao, G., Liu, E., Shu, X.: Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading,. Compos. Part B: Eng. 106, 206–217 (2016)CrossRef Jin, X., Wang, Z., Ning, J., Xiao, G., Liu, E., Shu, X.: Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading,. Compos. Part B: Eng. 106, 206–217 (2016)CrossRef
24.
Zurück zum Zitat Qi, C., et al.: “Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs,“Composites Part B: Engineering, vol. 197, (2020) Qi, C., et al.: “Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs,“Composites Part B: Engineering, vol. 197, (2020)
25.
Zurück zum Zitat Zhang, J.J., Lu, G.X., You, Z.: “Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review,“ Composites Part B-Engineering, vol.201, Nov Art. no. 108340. (2020) Zhang, J.J., Lu, G.X., You, Z.: “Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review,“ Composites Part B-Engineering, vol.201, Nov Art. no. 108340. (2020)
26.
Zurück zum Zitat Zhang, W.-M., et al.: “A lightweight rotationally arranged auxetic structure with excellent energy absorption performance,“ Mechanics of Materials, vol.166, p.104244, /03/01/ 2022. (2022) Zhang, W.-M., et al.: “A lightweight rotationally arranged auxetic structure with excellent energy absorption performance,“ Mechanics of Materials, vol.166, p.104244, /03/01/ 2022. (2022)
27.
Zurück zum Zitat Yan, J., et al.: “Ballistic characteristics of 3D-printed auxetic honeycomb sandwich panel using CFRP face sheet,“ International Journal of Impact Engineering, p.104186, /01/29/ 2022. (2022) Yan, J., et al.: “Ballistic characteristics of 3D-printed auxetic honeycomb sandwich panel using CFRP face sheet,“ International Journal of Impact Engineering, p.104186, /01/29/ 2022. (2022)
28.
Zurück zum Zitat Li, Y., Chen, Z., Xiao, D., Wu, W., Fang, D.: “The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading,“International Journal of Impact Engineering, vol. 137, (2020) Li, Y., Chen, Z., Xiao, D., Wu, W., Fang, D.: “The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading,“International Journal of Impact Engineering, vol. 137, (2020)
29.
Zurück zum Zitat Imbalzano, G., Linforth, S., Ngo, T.D., Lee, P.V.S., Tran, P.: Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs,. Compos. Struct. 183, 242–261 (2018)CrossRef Imbalzano, G., Linforth, S., Ngo, T.D., Lee, P.V.S., Tran, P.: Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs,. Compos. Struct. 183, 242–261 (2018)CrossRef
30.
Zurück zum Zitat Qi, C., Remennikov, A., Pei, L.-Z., Yang, S., Yu, Z.-H., Ngo, T.D.: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations,. Compos. Struct. 180, 161–178 (2017)CrossRef Qi, C., Remennikov, A., Pei, L.-Z., Yang, S., Yu, Z.-H., Ngo, T.D.: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations,. Compos. Struct. 180, 161–178 (2017)CrossRef
31.
Zurück zum Zitat Yang, S., Qi, C., Wang, D., Gao, R., Hu, H., Shu, J.: “A Comparative Study of Ballistic Resistance of Sandwich Panels with Aluminum Foam and Auxetic Honeycomb Cores,“. Adv. Mech. Eng. 5, 589216 (2015)CrossRef Yang, S., Qi, C., Wang, D., Gao, R., Hu, H., Shu, J.: “A Comparative Study of Ballistic Resistance of Sandwich Panels with Aluminum Foam and Auxetic Honeycomb Cores,“. Adv. Mech. Eng. 5, 589216 (2015)CrossRef
32.
Zurück zum Zitat Yu, R., Luo, W., Yuan, H., Liu, J., He, W., Yu, Z.: “Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson’s ratio,“Thin-Walled Structures, vol. 153, (2020) Yu, R., Luo, W., Yuan, H., Liu, J., He, W., Yu, Z.: “Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson’s ratio,“Thin-Walled Structures, vol. 153, (2020)
33.
Zurück zum Zitat Airoldi, A., Novak, N., Sgobba, F., Gilardelli, A., Borovinšek, M.: “Foam-filled energy absorbers with auxetic behaviour for localized impacts,“Materials Science and Engineering: A, vol. 788, (2020) Airoldi, A., Novak, N., Sgobba, F., Gilardelli, A., Borovinšek, M.: “Foam-filled energy absorbers with auxetic behaviour for localized impacts,“Materials Science and Engineering: A, vol. 788, (2020)
34.
Zurück zum Zitat Xiao, D., Chen, X., Li, Y., Wu, W., Fang, D.: “The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis,“Materials & Design, vol. 176, (2019) Xiao, D., Chen, X., Li, Y., Wu, W., Fang, D.: “The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis,“Materials & Design, vol. 176, (2019)
35.
Zurück zum Zitat Tan, P.J., Harrigan, J.J., Reid, S.R.: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam,. Mater. Sci. Technol. 18(5), 480–488 (2013)CrossRef Tan, P.J., Harrigan, J.J., Reid, S.R.: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam,. Mater. Sci. Technol. 18(5), 480–488 (2013)CrossRef
36.
Zurück zum Zitat Wu, X., Su, Y., Shi, J.: “In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials,“Composite Structures, vol. 247, (2020) Wu, X., Su, Y., Shi, J.: “In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials,“Composite Structures, vol. 247, (2020)
37.
Zurück zum Zitat Qi, D., Lu, Q., He, C., Li, Y., Wu, W., Xiao, D.: “Impact energy absorption of functionally graded chiral honeycomb structures,“Extreme Mechanics Letters, vol. 32, (2019) Qi, D., Lu, Q., He, C., Li, Y., Wu, W., Xiao, D.: “Impact energy absorption of functionally graded chiral honeycomb structures,“Extreme Mechanics Letters, vol. 32, (2019)
Metadaten
Titel
In-plane compression response of foam filled re-entrant auxetic structure
verfasst von
Xuke Lan
Guang Wu
Guangyan Huang
Publikationsdatum
16.09.2022
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 6/2022
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-022-10055-y

Weitere Artikel der Ausgabe 6/2022

Applied Composite Materials 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.