Skip to main content

2014 | OriginalPaper | Buchkapitel

In Silico Biology of Bone Regeneration Inside Calcium Phosphate Scaffolds

verfasst von : Aurélie Carlier, Hans Van Oosterwyck, Liesbet Geris

Erschienen in: Tissue Engineering

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bone tissue engineering plays a key role in finding better solutions for the healing of large bone defects and non-unions. Despite extensive experimental research, many of the mechanisms of the bone regeneration process still remain to be elucidated. As such, mathematical modeling is a useful tool to further investigate the different influential factors and their interactions in silico. This chapter starts with a description of the biological processes that take place during bone regeneration in calcium phosphate (CaP) scaffolds. The second section gives an overview of the most recent mathematical models of bone regeneration in (CaP) scaffolds. One model is explained in more detail and used to illustrate the potential of mathematical modeling in the bone tissue engineering field. Finally, the drawbacks of the current modeling techniques and the need for more quantitative experimental research, together with possible solutions are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Barrère F, van Blitterswijk C, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramic. Int J Nanomed 1:317–332 Barrère F, van Blitterswijk C, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramic. Int J Nanomed 1:317–332
2.
Zurück zum Zitat Barrère F, van der Valk C, Dalmeijer R, Meijer G, van Blitterswijk C, de Groot K, Layrolle P (2003) Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res, Part A 66:779–788 CrossRef Barrère F, van der Valk C, Dalmeijer R, Meijer G, van Blitterswijk C, de Groot K, Layrolle P (2003) Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res, Part A 66:779–788 CrossRef
3.
Zurück zum Zitat Beck Jr. GR Knecht N (2003) Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 278:41921–41929 CrossRef Beck Jr. GR Knecht N (2003) Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 278:41921–41929 CrossRef
4.
Zurück zum Zitat Bhandari M, Jain AK (2009) Bone stimulators: beyond the black box. Indian J Orthop 43:109–110 CrossRef Bhandari M, Jain AK (2009) Bone stimulators: beyond the black box. Indian J Orthop 43:109–110 CrossRef
5.
Zurück zum Zitat Bohner M, Loosli Y, Baroud G, Lacroix D (2011) Commentary: deciphering the link between architecture and biological response in a bone graft substitute. Acta Biomater 7:478–484 CrossRef Bohner M, Loosli Y, Baroud G, Lacroix D (2011) Commentary: deciphering the link between architecture and biological response in a bone graft substitute. Acta Biomater 7:478–484 CrossRef
6.
Zurück zum Zitat Bohner M, Baumgart F (2004) Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25:3569–3582 CrossRef Bohner M, Baumgart F (2004) Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25:3569–3582 CrossRef
7.
Zurück zum Zitat Bootman M, Young K, Young J, Moreton R, Berridge M (1996) Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1, 4,5-triphosphate production in hela cells. Biochem J 314:347–354 Bootman M, Young K, Young J, Moreton R, Berridge M (1996) Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1, 4,5-triphosphate production in hela cells. Biochem J 314:347–354
8.
Zurück zum Zitat Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554 CrossRef Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554 CrossRef
9.
Zurück zum Zitat Chai YC, Roberts SJ, Schrooten J, Luyten FP (2011) Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model. Tissue Eng A 17(7–8):1083–1097 CrossRef Chai YC, Roberts SJ, Schrooten J, Luyten FP (2011) Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model. Tissue Eng A 17(7–8):1083–1097 CrossRef
10.
Zurück zum Zitat Chang Y, Stanford C, Keller J (2000) Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite-enhanced bone formation. J Biomed Mater Res 52:240–278 CrossRef Chang Y, Stanford C, Keller J (2000) Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite-enhanced bone formation. J Biomed Mater Res 52:240–278 CrossRef
11.
Zurück zum Zitat Carlier A, Chai Y, Moesen M, Theys T, Schrooten J, Van Oosterwyck H, Geris L (2011) Designing optimal calcium phosphate scaffold-cell combinations using an integrative model based approach. Acta Biomater 7:3573–3585 CrossRef Carlier A, Chai Y, Moesen M, Theys T, Schrooten J, Van Oosterwyck H, Geris L (2011) Designing optimal calcium phosphate scaffold-cell combinations using an integrative model based approach. Acta Biomater 7:3573–3585 CrossRef
12.
Zurück zum Zitat Checa S, Prendergast PJ (2010) Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J Biomech 43:961–968 CrossRef Checa S, Prendergast PJ (2010) Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J Biomech 43:961–968 CrossRef
13.
Zurück zum Zitat Dvorak M, Siddiqua A, Ward D, Carter D, Dallas S, Nemeth E, Riccardi D (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA 101:5140–5145 CrossRef Dvorak M, Siddiqua A, Ward D, Carter D, Dallas S, Nemeth E, Riccardi D (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA 101:5140–5145 CrossRef
14.
Zurück zum Zitat Eyckmans J, Roberts S, Schrooten J, Luyten F (2010) A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signaling. J Cell Mol Med 14:1845–1856 CrossRef Eyckmans J, Roberts S, Schrooten J, Luyten F (2010) A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signaling. J Cell Mol Med 14:1845–1856 CrossRef
15.
Zurück zum Zitat Geris L, Reed AAC, Vander Sloten J, Simpson AHRW, Van Oosterwyck H (2010) Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput Biol 6(9):e1000915. doi:10.1371/journal.pcbi.1000915 CrossRef Geris L, Reed AAC, Vander Sloten J, Simpson AHRW, Van Oosterwyck H (2010) Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput Biol 6(9):e1000915. doi:10.​1371/​journal.​pcbi.​1000915 CrossRef
16.
Zurück zum Zitat Geris L, Gerisch A Schugart RC (2010) Mathematical modeling in wound healing, bone regeneration and tissue engineering. Acta Biotheor 58:355–367 CrossRef Geris L, Gerisch A Schugart RC (2010) Mathematical modeling in wound healing, bone regeneration and tissue engineering. Acta Biotheor 58:355–367 CrossRef
17.
Zurück zum Zitat Geris L, Schugart RC, Van Oosterwyck H (2010) In silico design of treatment strategies in wound healing and bone fracture healing. Philos Trans R Soc Lond A 368:2683–2706 CrossRef Geris L, Schugart RC, Van Oosterwyck H (2010) In silico design of treatment strategies in wound healing and bone fracture healing. Philos Trans R Soc Lond A 368:2683–2706 CrossRef
18.
Zurück zum Zitat Geris L, Vander Sloten J, Van Oosterwyck H (2009) In silico biology of bone modelling and remodelling: regeneration. Philos Trans R Soc, Math Phys Eng Sci 367:2031–2053 CrossRef Geris L, Vander Sloten J, Van Oosterwyck H (2009) In silico biology of bone modelling and remodelling: regeneration. Philos Trans R Soc, Math Phys Eng Sci 367:2031–2053 CrossRef
19.
Zurück zum Zitat Habibovic P, de Groot K (2007) Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32 CrossRef Habibovic P, de Groot K (2007) Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32 CrossRef
20.
Zurück zum Zitat Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H et al. (1997) Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 36:131–135 CrossRef Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H et al. (1997) Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 36:131–135 CrossRef
21.
Zurück zum Zitat Hartman E, Vehof J, Spauwen P, Jansen J (2005) Ectopic bone formation in rats: the importance of the carrier. Biomaterials 26:1829–1835 CrossRef Hartman E, Vehof J, Spauwen P, Jansen J (2005) Ectopic bone formation in rats: the importance of the carrier. Biomaterials 26:1829–1835 CrossRef
22.
Zurück zum Zitat Impens S, Schelstraete R, Mullens S, Thijs I, Luyten J, Schrooten J (2008) scaffolds for bone tissue engineering. In: vitro dissolution behavior of custom made CaP. Key eng mater, vol 20, pp 7–10 Impens S, Schelstraete R, Mullens S, Thijs I, Luyten J, Schrooten J (2008) scaffolds for bone tissue engineering. In: vitro dissolution behavior of custom made CaP. Key eng mater, vol 20, pp 7–10
23.
Zurück zum Zitat Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF et al. (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24:1856–1868 CrossRef Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF et al. (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24:1856–1868 CrossRef
24.
Zurück zum Zitat Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffold for bone tissue engineering. Philos Trans R Soc Lond A 367:1993–2009 CrossRefMATH Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffold for bone tissue engineering. Philos Trans R Soc Lond A 367:1993–2009 CrossRefMATH
25.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5510):920–926 CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5510):920–926 CrossRef
26.
Zurück zum Zitat Liu G, Qutub A, Vempati P, Mac Gabhann F, Popel AS (2011) Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor Biol Med Model 8:6 CrossRef Liu G, Qutub A, Vempati P, Mac Gabhann F, Popel AS (2011) Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor Biol Med Model 8:6 CrossRef
27.
Zurück zum Zitat Liu YK, Lu QZ, Pei R, Ji HJ, Zhou GS, Zhao XL et al. (2009) The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomed Mater 4:025004 CrossRef Liu YK, Lu QZ, Pei R, Ji HJ, Zhou GS, Zhao XL et al. (2009) The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomed Mater 4:025004 CrossRef
28.
Zurück zum Zitat Liu YK, Wang GC, Cai YR, Ji HJ, Zhou GS, Zhao XL, Tang RK, Zhang M (2008) In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Biomed Mater Res, Part A 90(4):1083–1091 Liu YK, Wang GC, Cai YR, Ji HJ, Zhou GS, Zhao XL, Tang RK, Zhang M (2008) In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Biomed Mater Res, Part A 90(4):1083–1091
29.
Zurück zum Zitat Massa A (2007) The merging field of regenerative medicine. MMG 445 Basic Biotech eJournal 3:137–143 Massa A (2007) The merging field of regenerative medicine. MMG 445 Basic Biotech eJournal 3:137–143
30.
Zurück zum Zitat Meier-Schellersheim M, Fraser I, Klauschen F (2009) Multiscale modeling for biologists. WIREs Syst Biol Med 1:4–14 CrossRef Meier-Schellersheim M, Fraser I, Klauschen F (2009) Multiscale modeling for biologists. WIREs Syst Biol Med 1:4–14 CrossRef
31.
Zurück zum Zitat Milan JL, Planell JA, Lacroix D (2010) Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech Model Mechanobiol 9:583–596 CrossRef Milan JL, Planell JA, Lacroix D (2010) Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech Model Mechanobiol 9:583–596 CrossRef
32.
Zurück zum Zitat Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104 CrossRef Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104 CrossRef
33.
Zurück zum Zitat Peiffer V, Gerisch A, Vandepitte D, Van Oosterwyck H, Geris L (2011) A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 10:383–395 CrossRef Peiffer V, Gerisch A, Vandepitte D, Van Oosterwyck H, Geris L (2011) A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 10:383–395 CrossRef
34.
Zurück zum Zitat Pioletti D, Takei H, Lin T, Van Landuyt P, Ma Q, Kwon S, Sung KL (2000) The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials 21:1103–1114 CrossRef Pioletti D, Takei H, Lin T, Van Landuyt P, Ma Q, Kwon S, Sung KL (2000) The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials 21:1103–1114 CrossRef
35.
Zurück zum Zitat Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17:31–35 CrossRef Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17:31–35 CrossRef
36.
Zurück zum Zitat Roberts SJ, Geris L, Kerckhofs G, Desmet E, Schrooten J, Luyten F (2011) The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32:4393–4405 CrossRef Roberts SJ, Geris L, Kerckhofs G, Desmet E, Schrooten J, Luyten F (2011) The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32:4393–4405 CrossRef
37.
Zurück zum Zitat Sanz-Herrera JA, Garcia-Aznar JM, Doblare M (2008) A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech Model Mechanobiol 7:355–366 CrossRef Sanz-Herrera JA, Garcia-Aznar JM, Doblare M (2008) A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech Model Mechanobiol 7:355–366 CrossRef
38.
Zurück zum Zitat Sanz-Herrera JA, García-Aznar JM, Doblaré M (2008) Micro-macro numerical modeling of bone regeneration in tissue engineering. Comput Methods Appl Mech Eng 197:3092–3107 CrossRefMATH Sanz-Herrera JA, García-Aznar JM, Doblaré M (2008) Micro-macro numerical modeling of bone regeneration in tissue engineering. Comput Methods Appl Mech Eng 197:3092–3107 CrossRefMATH
39.
Zurück zum Zitat Sengers BG, Taylor M, Please C, Oreffo RO (2007) Computational modeling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials 28:1926–1940 CrossRef Sengers BG, Taylor M, Please C, Oreffo RO (2007) Computational modeling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials 28:1926–1940 CrossRef
40.
Zurück zum Zitat Shelton RM, Rasmussen AC, Davies JE (1988) Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts. Biomaterials 9:24–29 CrossRef Shelton RM, Rasmussen AC, Davies JE (1988) Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts. Biomaterials 9:24–29 CrossRef
41.
Zurück zum Zitat Stein GS, Lian JB, Stein JL, van Wijnen AJ, Frenkel B, Monteccino M (1996) Mechanisms regulating osteoblast proliferation and differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, California, pp 69–87 Stein GS, Lian JB, Stein JL, van Wijnen AJ, Frenkel B, Monteccino M (1996) Mechanisms regulating osteoblast proliferation and differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, California, pp 69–87
42.
Zurück zum Zitat Stops AJF, Heraty KB, Browne M, O’Brien FJ, McHugh PE (2010) A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J Biomech 43(4):618–626 CrossRef Stops AJF, Heraty KB, Browne M, O’Brien FJ, McHugh PE (2010) A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J Biomech 43(4):618–626 CrossRef
43.
Zurück zum Zitat Sun S, Liu Y, Lipsky S, Cho M (2007) Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 21:1472–1480 CrossRef Sun S, Liu Y, Lipsky S, Cho M (2007) Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 21:1472–1480 CrossRef
44.
Zurück zum Zitat Titorencu I, Jinga V, Constantinescu E, Gafencu A, Ciohodaru C, Manolescu I et al. (2007) Proliferation, differentiation and characterization of osteoblasts from human BM mesenchymal stem cells. Cytotherapy 9:682–696 CrossRef Titorencu I, Jinga V, Constantinescu E, Gafencu A, Ciohodaru C, Manolescu I et al. (2007) Proliferation, differentiation and characterization of osteoblasts from human BM mesenchymal stem cells. Cytotherapy 9:682–696 CrossRef
45.
Zurück zum Zitat van der Meulen MC, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech 35:401–414 CrossRef van der Meulen MC, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech 35:401–414 CrossRef
46.
Zurück zum Zitat Yuan H, van Blitterswijk C, de Groot K, de Bruijn J (2006) A comparison of bone formation in biphasic calcium phosphate and hydroxyapatite implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res, Part A 78:130–147 Yuan H, van Blitterswijk C, de Groot K, de Bruijn J (2006) A comparison of bone formation in biphasic calcium phosphate and hydroxyapatite implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res, Part A 78:130–147
47.
Zurück zum Zitat Zhou GS, Su ZY, Cai YR, Liu YK, Dai LC, Tang RK, Zhang M (2007) Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Biomed Mater Eng 17:387–395 Zhou GS, Su ZY, Cai YR, Liu YK, Dai LC, Tang RK, Zhang M (2007) Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Biomed Mater Eng 17:387–395
48.
Zurück zum Zitat Bailón-Plaza A, van der Meulen M (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212:191–209 CrossRef Bailón-Plaza A, van der Meulen M (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212:191–209 CrossRef
49.
Zurück zum Zitat Eyckmans J, Roberts S, Schrooten J, Luyten F (2010) A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signaling. J Cell Mol Med 14:1845–1856 CrossRef Eyckmans J, Roberts S, Schrooten J, Luyten F (2010) A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signaling. J Cell Mol Med 14:1845–1856 CrossRef
50.
Zurück zum Zitat Geris L, Gerisch A, Vander Sloten J, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: A bioregulatory model. J Theor Biol 251:137–158 CrossRef Geris L, Gerisch A, Vander Sloten J, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: A bioregulatory model. J Theor Biol 251:137–158 CrossRef
51.
Zurück zum Zitat Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A et al. (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855 CrossRef Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A et al. (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855 CrossRef
52.
Zurück zum Zitat Liu Y, Lu Q, Pei R, Ji H, Zhou G, Zhao X et al. (2009) The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomed Mater 4(2):025004 CrossRef Liu Y, Lu Q, Pei R, Ji H, Zhou G, Zhao X et al. (2009) The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomed Mater 4(2):025004 CrossRef
53.
Zurück zum Zitat Yuan H, van Blitterswijk C, de Groot K, de Bruijn J (2006) A comparison of bone formation in biphasic calcium phosphate and hydroxyapatite implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res, Part A 78:130–417 Yuan H, van Blitterswijk C, de Groot K, de Bruijn J (2006) A comparison of bone formation in biphasic calcium phosphate and hydroxyapatite implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res, Part A 78:130–417
Metadaten
Titel
In Silico Biology of Bone Regeneration Inside Calcium Phosphate Scaffolds
verfasst von
Aurélie Carlier
Hans Van Oosterwyck
Liesbet Geris
Copyright-Jahr
2014
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-7073-7_2

Neuer Inhalt