Skip to main content
Erschienen in: Journal of Materials Science 7/2018

18.12.2017 | Composites

In situ chemical vapor deposition of metals on vapor-grown carbon fibers and fabrication of aluminum-matrix composites reinforced by coated fibers

verfasst von: Fumio Ogawa, Chitoshi Masuda, Hidetoshi Fujii

Erschienen in: Journal of Materials Science | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum, nickel, silicon, and titanium were deposited onto the surfaces of vapor-grown carbon fibers (VGCFs) using a simple and cost-effective in situ chemical vapor deposition method. This process began with the in situ reaction of metal powders and iodine in heated quartz tubes, leading to the formation of metallic iodide vapors. Aluminum was deposited by annealing at 500 °C, forming almost homogeneous metallic aluminum layers on VGCFs. Aluminum-matrix composites reinforced by aluminum-coated VGCFs were fabricated by powder metallurgy. The tensile strength of these composites was improved by the aluminum-coating treatment. Nickel was deposited by annealing at 600 °C. The coating layer consisted of grains smaller than 5 nm. Molten aluminum was dropped on sheets comprising nickel-coated VGCFs, and the contact angle was measured; the wettability was found to be clearly improved. Composites containing nickel-coated VGCFs were fabricated via hot extrusion of a mixture of Al–7Si alloy and VGCFs at semisolid temperature. Vickers microhardness values of the composites were improved by nickel-coating treatment because of improved interaction of the aluminum matrix and VGCFs at the interface. A metallic silicon-coating layer was formed by annealing at 1100 °C. For titanium coating, the reaction of VGCFs with titanium and conversion of the VGCF surface into titanium carbide was confirmed. In the case of titanium, metallic titanium could be deposited without the use of iodine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Suresh S, Mortensen A, Needleman A (1993) Fundamentals of metal matrix composites. Butterworth-Heinemann, Oxford, pp 297–326 Suresh S, Mortensen A, Needleman A (1993) Fundamentals of metal matrix composites. Butterworth-Heinemann, Oxford, pp 297–326
2.
Zurück zum Zitat Miracle DB (2005) Metal matrix composites–from science to technological significance. Compos Sci Technol 65:2526–2540CrossRef Miracle DB (2005) Metal matrix composites–from science to technological significance. Compos Sci Technol 65:2526–2540CrossRef
3.
Zurück zum Zitat Kainer KU (2006) Metal matrix composites Custom-made materials for automotive and aerospace engineering. Wiley, Weinheim, pp 1–54CrossRef Kainer KU (2006) Metal matrix composites Custom-made materials for automotive and aerospace engineering. Wiley, Weinheim, pp 1–54CrossRef
4.
Zurück zum Zitat Rohatgi PK, Schultz B (2011) Lightweight metal matrix nanocomposites–stretching the boundaries of metals. Mater Matters 2:16–20 Rohatgi PK, Schultz B (2011) Lightweight metal matrix nanocomposites–stretching the boundaries of metals. Mater Matters 2:16–20
5.
Zurück zum Zitat Jaylakshmi S, Singh RA, Gupta M (2016) Synthesis of light metal nanocomposites: challenges and opportunities. Indian J Adv Chem Sci S1:283–288 Jaylakshmi S, Singh RA, Gupta M (2016) Synthesis of light metal nanocomposites: challenges and opportunities. Indian J Adv Chem Sci S1:283–288
6.
Zurück zum Zitat George R, Kashyap KT, Rahul R, Yamdagnim S (2005) Strengthening in carbon nanotube/aluminum (CNT/Al) composites. Scr Mater 53:1159–1163CrossRef George R, Kashyap KT, Rahul R, Yamdagnim S (2005) Strengthening in carbon nanotube/aluminum (CNT/Al) composites. Scr Mater 53:1159–1163CrossRef
7.
Zurück zum Zitat Uozumi H, Kobayashi K, Masuda C, Yoshida M (2006) Fabrication process of carbonaceous fiber reinforced Al and/or Mg alloy(s) composite by squeeze casting. Adv Mater Res 15–17:209–214 Uozumi H, Kobayashi K, Masuda C, Yoshida M (2006) Fabrication process of carbonaceous fiber reinforced Al and/or Mg alloy(s) composite by squeeze casting. Adv Mater Res 15–17:209–214
8.
Zurück zum Zitat Esawi AMK, Morsi K, Sayed A, Gawad AA, Borah P (2009) Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater Sci Eng, A 508:167–173CrossRef Esawi AMK, Morsi K, Sayed A, Gawad AA, Borah P (2009) Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater Sci Eng, A 508:167–173CrossRef
9.
Zurück zum Zitat Laha T, Chen Y, Lahiri D, Agarwal A (2009) Tensile properties of carbon nanotube reinforced aluminium composites fabricated by plasma spray forming. Compos Part A 40:589–594CrossRef Laha T, Chen Y, Lahiri D, Agarwal A (2009) Tensile properties of carbon nanotube reinforced aluminium composites fabricated by plasma spray forming. Compos Part A 40:589–594CrossRef
10.
Zurück zum Zitat Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-directional alignment of carbon nanotubes. Scr Mater 66:331–334CrossRef Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-directional alignment of carbon nanotubes. Scr Mater 66:331–334CrossRef
11.
Zurück zum Zitat He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19:1128–1132CrossRef He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19:1128–1132CrossRef
12.
Zurück zum Zitat Choi H, Shin J, Min B, Park J, Bae D (2009) Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J Mater Res 24:2610–2616CrossRef Choi H, Shin J, Min B, Park J, Bae D (2009) Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J Mater Res 24:2610–2616CrossRef
13.
Zurück zum Zitat Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49:533–544CrossRef Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49:533–544CrossRef
14.
Zurück zum Zitat Ogawa F, Masuda C (2015) Microstructure evolution during fabrication and microstructure-property relationships in vapour-grown carbon nanofiber-reinforced aluminum-matrix composites fabricated via powder metallurgy. Compos Part A 71:84–94CrossRef Ogawa F, Masuda C (2015) Microstructure evolution during fabrication and microstructure-property relationships in vapour-grown carbon nanofiber-reinforced aluminum-matrix composites fabricated via powder metallurgy. Compos Part A 71:84–94CrossRef
15.
Zurück zum Zitat Kwon H, Leparoux M (2012) Hot extruded carbon nanotube reinforced aluminum-matrix composite materials. Nanotechnology 23:415701CrossRef Kwon H, Leparoux M (2012) Hot extruded carbon nanotube reinforced aluminum-matrix composite materials. Nanotechnology 23:415701CrossRef
16.
Zurück zum Zitat Chu K, Guo H, Jia C, Yin F, Zhang X, Liang X, Chen H (2010) Thermal properties of carbon nanotube–copper composites for thermal management applications. Nanoscale Res Lett 5:868–874CrossRef Chu K, Guo H, Jia C, Yin F, Zhang X, Liang X, Chen H (2010) Thermal properties of carbon nanotube–copper composites for thermal management applications. Nanoscale Res Lett 5:868–874CrossRef
17.
Zurück zum Zitat Yamanaka S, Gonda R, Kawasaki A, Sakamoto H, Mekuchi Y, Kuno M, Tsukada T (2007) Fabrication and thermal properties of carbon nanotube/nickel composite by spark plasma sintering method. Mater Trans 48:2506–2512CrossRef Yamanaka S, Gonda R, Kawasaki A, Sakamoto H, Mekuchi Y, Kuno M, Tsukada T (2007) Fabrication and thermal properties of carbon nanotube/nickel composite by spark plasma sintering method. Mater Trans 48:2506–2512CrossRef
18.
Zurück zum Zitat Banno N, Takeuchi T (2009) Enhancement of electrical conductivity of copper/carbon-nanotube composite wire. J Jpn Inst Met Mater 73:651–658CrossRef Banno N, Takeuchi T (2009) Enhancement of electrical conductivity of copper/carbon-nanotube composite wire. J Jpn Inst Met Mater 73:651–658CrossRef
19.
Zurück zum Zitat Zhou W, Yamamoto G, Fan Y, Kwon H, Hashida T, Kawasaki A (2016) In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum-matrix composites. Carbon 106:37–47CrossRef Zhou W, Yamamoto G, Fan Y, Kwon H, Hashida T, Kawasaki A (2016) In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum-matrix composites. Carbon 106:37–47CrossRef
24.
Zurück zum Zitat Rams J, Ureña A, Escalera MD, Sánchez M (2007) Electroless nickel coated short carbon fibers in aluminium matrix composites. Compos Part A 38:566–575CrossRef Rams J, Ureña A, Escalera MD, Sánchez M (2007) Electroless nickel coated short carbon fibers in aluminium matrix composites. Compos Part A 38:566–575CrossRef
25.
Zurück zum Zitat Ogawa F, Masuda C (2015) Fabrication of carbon nanofiber-reinforced aluminum-matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition. Mater Res Express 2:015601CrossRef Ogawa F, Masuda C (2015) Fabrication of carbon nanofiber-reinforced aluminum-matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition. Mater Res Express 2:015601CrossRef
26.
Zurück zum Zitat Park JS, Kim JM, Kim HY, Lee JS, Oh IH, Kang CS (2008) Surface protection effect of diffusion pack cementation process by Al–Si powders with chloride activator on magnesium and its alloys. Mater Trans 49:1048–1051CrossRef Park JS, Kim JM, Kim HY, Lee JS, Oh IH, Kang CS (2008) Surface protection effect of diffusion pack cementation process by Al–Si powders with chloride activator on magnesium and its alloys. Mater Trans 49:1048–1051CrossRef
27.
Zurück zum Zitat Bianco R, Rapp RA (1993) Pack cementation aluminide coatings on superalloys: codeposition of Cr and reaction of elements. J Electrochem Soc 140:1181–1190CrossRef Bianco R, Rapp RA (1993) Pack cementation aluminide coatings on superalloys: codeposition of Cr and reaction of elements. J Electrochem Soc 140:1181–1190CrossRef
28.
Zurück zum Zitat Ogawa F, Masuda C (2017) Interface observation of aluminum-coated carbon nanofibers prepared by in situ chemical vapor deposition. J Phys Chem C 121:6126–6132CrossRef Ogawa F, Masuda C (2017) Interface observation of aluminum-coated carbon nanofibers prepared by in situ chemical vapor deposition. J Phys Chem C 121:6126–6132CrossRef
29.
Zurück zum Zitat Shen P, Fujii H, Matsumoto T, Nogi K (2003) Wetting of (0001) α-Al2O3 single crystals by molten Al. Scr Mater 48:779–784CrossRef Shen P, Fujii H, Matsumoto T, Nogi K (2003) Wetting of (0001) α-Al2O3 single crystals by molten Al. Scr Mater 48:779–784CrossRef
30.
Zurück zum Zitat Tyagi PK, Misra A, Singh MK, Misra DS (2015) High-resolution transmission electron microscopy mapping of nickel and cobalt single-crystalline nanorods inside multiwalled carbon nanotubes and chirality calculations. App Phys Lett 86:253110CrossRef Tyagi PK, Misra A, Singh MK, Misra DS (2015) High-resolution transmission electron microscopy mapping of nickel and cobalt single-crystalline nanorods inside multiwalled carbon nanotubes and chirality calculations. App Phys Lett 86:253110CrossRef
31.
Zurück zum Zitat So KP, Jeong JC, Park JG, Park HK, Choi YH, Noh DH, Keum DH, Jeong HY, Biswas C, Hong CH, Lee YH (2013) SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol 74:6–13CrossRef So KP, Jeong JC, Park JG, Park HK, Choi YH, Noh DH, Keum DH, Jeong HY, Biswas C, Hong CH, Lee YH (2013) SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol 74:6–13CrossRef
32.
Zurück zum Zitat Leon CA, Drew RAL (2002) The influence of nickel coating on the wettability of aluminum on ceramics. Compos Part A 33:1429–1432CrossRef Leon CA, Drew RAL (2002) The influence of nickel coating on the wettability of aluminum on ceramics. Compos Part A 33:1429–1432CrossRef
33.
Zurück zum Zitat He J-W, Xu X, Corneille JS, Goodman DW (1992) X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo (100) surface. Surf Sci 279:119–126CrossRef He J-W, Xu X, Corneille JS, Goodman DW (1992) X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo (100) surface. Surf Sci 279:119–126CrossRef
34.
Zurück zum Zitat Sato T, Kato A, Arai K, Takizawa H, Arai S (2008) On the surface modification for wettability of VGCF to molten magnesium alloy. J Surf Finish Soc Jpn 59:265–267CrossRef Sato T, Kato A, Arai K, Takizawa H, Arai S (2008) On the surface modification for wettability of VGCF to molten magnesium alloy. J Surf Finish Soc Jpn 59:265–267CrossRef
35.
Zurück zum Zitat Ureña A, Martínez EE, Rodrigo P, Gil L (2004) Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites. Compos Sci Technol 64:1843–1854CrossRef Ureña A, Martínez EE, Rodrigo P, Gil L (2004) Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites. Compos Sci Technol 64:1843–1854CrossRef
36.
Zurück zum Zitat Felten A, Suarez-Martinez I, Ke X, Tendeloo GV, Ghijsen J, Pireaux J-J, Drube W, Bittencourt C, Ewels CP (2009) The role of oxygen at the interface between titanium and carbon nanotubes. Chem Phys Chem 10:1799–1804CrossRef Felten A, Suarez-Martinez I, Ke X, Tendeloo GV, Ghijsen J, Pireaux J-J, Drube W, Bittencourt C, Ewels CP (2009) The role of oxygen at the interface between titanium and carbon nanotubes. Chem Phys Chem 10:1799–1804CrossRef
37.
Zurück zum Zitat Cottam BF, Shaffer MSP (2007) Synthesis of oriented arrays of TiO2 nanorods via a high temperature conversion of carbon nanotubes. Chem Commun 42:4378–4380CrossRef Cottam BF, Shaffer MSP (2007) Synthesis of oriented arrays of TiO2 nanorods via a high temperature conversion of carbon nanotubes. Chem Commun 42:4378–4380CrossRef
38.
Zurück zum Zitat Shechtman D, Van Heerden D, Josell D (1994) FCC titanium in Ti-Al multilayers. Mater Lett 20:329–334CrossRef Shechtman D, Van Heerden D, Josell D (1994) FCC titanium in Ti-Al multilayers. Mater Lett 20:329–334CrossRef
Metadaten
Titel
In situ chemical vapor deposition of metals on vapor-grown carbon fibers and fabrication of aluminum-matrix composites reinforced by coated fibers
verfasst von
Fumio Ogawa
Chitoshi Masuda
Hidetoshi Fujii
Publikationsdatum
18.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1921-9

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.