Skip to main content

2018 | OriginalPaper | Buchkapitel

4. In Situ Localized Surface Plasmon Resonance Spectroscopy for Gold and Silver Nanoparticles

verfasst von : Ji Zhou, Bin Tang

Erschienen in: In-situ Characterization Techniques for Nanomaterials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles (NPs) is a powerful technique for chemical and biological sensing experiments. LSPR is responsible for the electromagnetic field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes [1].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRef Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRef
2.
Zurück zum Zitat Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef
3.
Zurück zum Zitat Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395CrossRef Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395CrossRef
4.
Zurück zum Zitat Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22 Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22
5.
Zurück zum Zitat Piella J, Bastus NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075CrossRef Piella J, Bastus NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075CrossRef
6.
Zurück zum Zitat Luo M, Huang H, Choi S-I, Zhang C, da Silva RR, Peng H-C, Li Z-Y, Liu J, He Z, Xia Y (2015) Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using pd decahedra of 16 nm in size as seeds. ACS Nano 9:10523–10532CrossRef Luo M, Huang H, Choi S-I, Zhang C, da Silva RR, Peng H-C, Li Z-Y, Liu J, He Z, Xia Y (2015) Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using pd decahedra of 16 nm in size as seeds. ACS Nano 9:10523–10532CrossRef
7.
Zurück zum Zitat Wang W, Yan Y, Zhou N, Zhang H, Li D, Yang D (2016) Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties. Nanoscale 8:3704–3710CrossRef Wang W, Yan Y, Zhou N, Zhang H, Li D, Yang D (2016) Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties. Nanoscale 8:3704–3710CrossRef
8.
Zurück zum Zitat Chao Y-J, Lyu Y-P, Wu Z-W, Lee C-L (2016) Seed-mediated growth of Ag nanocubes and their size-dependent activities toward oxygen reduction reaction. Int J Hydrog Energy 41:3896–3903CrossRef Chao Y-J, Lyu Y-P, Wu Z-W, Lee C-L (2016) Seed-mediated growth of Ag nanocubes and their size-dependent activities toward oxygen reduction reaction. Int J Hydrog Energy 41:3896–3903CrossRef
9.
Zurück zum Zitat Zhang X, Hicks EM, Zhao J, Schatz GC, Van Duyne RP (2005) Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. Nano Lett 5:1503–1507CrossRef Zhang X, Hicks EM, Zhao J, Schatz GC, Van Duyne RP (2005) Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. Nano Lett 5:1503–1507CrossRef
10.
Zurück zum Zitat Jin RC, Cao YC, Hao EC, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490CrossRef Jin RC, Cao YC, Hao EC, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490CrossRef
11.
Zurück zum Zitat Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903CrossRef Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903CrossRef
12.
Zurück zum Zitat Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819CrossRef Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819CrossRef
13.
Zurück zum Zitat Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators B Chem 195:332–351CrossRef Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators B Chem 195:332–351CrossRef
14.
Zurück zum Zitat Zhang Q, Zhou Y, Villarreal E, Lin Y, Zou S, Wang H (2015) Faceted gold nanorods: nanocuboids, convex nanocuboids, and concave nanocuboids. Nano Lett 15:4161–4169CrossRef Zhang Q, Zhou Y, Villarreal E, Lin Y, Zou S, Wang H (2015) Faceted gold nanorods: nanocuboids, convex nanocuboids, and concave nanocuboids. Nano Lett 15:4161–4169CrossRef
15.
Zurück zum Zitat Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRef Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRef
16.
Zurück zum Zitat Tian L, Chen E, Gandra N, Abbas A, Singamaneni S (2012) Gold nanorods as plasmonic nanotransducers: distance-dependent refractive index sensitivity. Langmuir 28:17435–17442CrossRef Tian L, Chen E, Gandra N, Abbas A, Singamaneni S (2012) Gold nanorods as plasmonic nanotransducers: distance-dependent refractive index sensitivity. Langmuir 28:17435–17442CrossRef
17.
Zurück zum Zitat Scarabelli L, Grzelczak M, Liz-Marzán LM (2013) Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem Mater 25:4232–4238CrossRef Scarabelli L, Grzelczak M, Liz-Marzán LM (2013) Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem Mater 25:4232–4238CrossRef
18.
Zurück zum Zitat Martinsson E, Shahjamali MM, Large N, Zaraee N, Zhou Y, Schatz GC, Mirkin CA, Aili D (2016) Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles. Small 12:330–342CrossRef Martinsson E, Shahjamali MM, Large N, Zaraee N, Zhou Y, Schatz GC, Mirkin CA, Aili D (2016) Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles. Small 12:330–342CrossRef
19.
Zurück zum Zitat Ye S, Song J, Tian Y, Chen L, Wang D, Niu H, Qu J (2015) Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale 7:12706–12712CrossRef Ye S, Song J, Tian Y, Chen L, Wang D, Niu H, Qu J (2015) Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale 7:12706–12712CrossRef
20.
Zurück zum Zitat Bansal A, Verma SS (2015) Optical response of noble metal alloy nanostructures. Phys Lett A 379:163–169CrossRef Bansal A, Verma SS (2015) Optical response of noble metal alloy nanostructures. Phys Lett A 379:163–169CrossRef
21.
Zurück zum Zitat Njoki PN, Lim IIS, Mott D, Park H-Y, Khan B, Mishra S, Sujakumar R, Luo J, Zhong C-J (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669CrossRef Njoki PN, Lim IIS, Mott D, Park H-Y, Khan B, Mishra S, Sujakumar R, Luo J, Zhong C-J (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669CrossRef
22.
Zurück zum Zitat Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRef Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRef
23.
Zurück zum Zitat Tang B, Xu S, Jian X, Tao J, Xu W (2010) Real-time, in-situ, extinction spectroscopy studies on silver-nanoseed formation. Appl Spectrosc 64:1407–1415CrossRef Tang B, Xu S, Jian X, Tao J, Xu W (2010) Real-time, in-situ, extinction spectroscopy studies on silver-nanoseed formation. Appl Spectrosc 64:1407–1415CrossRef
24.
Zurück zum Zitat Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV−vis spectroscopy. J Phys Chem C 113:4277–4285CrossRef Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV−vis spectroscopy. J Phys Chem C 113:4277–4285CrossRef
25.
Zurück zum Zitat Tang B, An J, Zheng X, Xu S, Li D, Zhou J, Zhao B, Xu W (2008) Silver nanodisks with tunable size by heat aging. J Phys Chem C 112:18361–18367CrossRef Tang B, An J, Zheng X, Xu S, Li D, Zhou J, Zhao B, Xu W (2008) Silver nanodisks with tunable size by heat aging. J Phys Chem C 112:18361–18367CrossRef
26.
Zurück zum Zitat O’Brien MN, Jones MR, Kohlstedt KL, Schatz GC, Mirkin CA (2015) Uniform circular disks with synthetically tailorable diameters: two-dimensional nanoparticles for plasmonics. Nano Lett 15:1012–1017CrossRef O’Brien MN, Jones MR, Kohlstedt KL, Schatz GC, Mirkin CA (2015) Uniform circular disks with synthetically tailorable diameters: two-dimensional nanoparticles for plasmonics. Nano Lett 15:1012–1017CrossRef
27.
Zurück zum Zitat Zhang Q, Li W, Moran C, Zeng J, Chen J, Wen L-P, Xia Y (2010) Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30−200 nm and comparison of their optical properties. J Am Chem Soc 132:11372–11378CrossRef Zhang Q, Li W, Moran C, Zeng J, Chen J, Wen L-P, Xia Y (2010) Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30−200 nm and comparison of their optical properties. J Am Chem Soc 132:11372–11378CrossRef
28.
Zurück zum Zitat Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712CrossRef Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712CrossRef
29.
Zurück zum Zitat Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952CrossRef Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952CrossRef
30.
Zurück zum Zitat Zhao C, Zhu Y, Su Y, Guan Z, Chen A, Ji X, Gui X, Xiang R, Tang Z (2015) Tailoring plasmon resonances in aluminium nanoparticle arrays fabricated using anodic aluminium oxide. Adv Opt Mater 3:248–256CrossRef Zhao C, Zhu Y, Su Y, Guan Z, Chen A, Ji X, Gui X, Xiang R, Tang Z (2015) Tailoring plasmon resonances in aluminium nanoparticle arrays fabricated using anodic aluminium oxide. Adv Opt Mater 3:248–256CrossRef
31.
Zurück zum Zitat Ma YW, Zhang LH, Wu ZW, Yi MF, Zhang J, Jian GS (2015) The study of tunable local surface plasmon resonances on Au-Ag and Ag-Au core-shell alloy nanostructure particles with DDA method. Plasmonics 10:1791–1800CrossRef Ma YW, Zhang LH, Wu ZW, Yi MF, Zhang J, Jian GS (2015) The study of tunable local surface plasmon resonances on Au-Ag and Ag-Au core-shell alloy nanostructure particles with DDA method. Plasmonics 10:1791–1800CrossRef
32.
Zurück zum Zitat Verbruggen SW, Keulemans M, Martens JA, Lenaerts S (2013) Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles. J Phys Chem C 117:19142–19145CrossRef Verbruggen SW, Keulemans M, Martens JA, Lenaerts S (2013) Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles. J Phys Chem C 117:19142–19145CrossRef
33.
Zurück zum Zitat Gao C, Hu Y, Wang M, Chi M, Yin Y (2014) Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. J Am Chem Soc 136:7474–7479CrossRef Gao C, Hu Y, Wang M, Chi M, Yin Y (2014) Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. J Am Chem Soc 136:7474–7479CrossRef
34.
Zurück zum Zitat Tuersun P (2016) Simulated localized surface plasmon spectra of single gold and silver nanobars. Optik 127:3466–3470CrossRef Tuersun P (2016) Simulated localized surface plasmon spectra of single gold and silver nanobars. Optik 127:3466–3470CrossRef
35.
Zurück zum Zitat Liu H, Liu T, Zhang L, Han L, Gao C, Yin Y (2015) Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv Funct Mater 25:5435–5443CrossRef Liu H, Liu T, Zhang L, Han L, Gao C, Yin Y (2015) Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv Funct Mater 25:5435–5443CrossRef
36.
Zurück zum Zitat Zohar N, Chuntonov L, Haran G (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J Photochem Photobiol C Photochem Rev 21:26–39CrossRef Zohar N, Chuntonov L, Haran G (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J Photochem Photobiol C Photochem Rev 21:26–39CrossRef
37.
Zurück zum Zitat Tian XD, Zhou YD, Thota S, Zou SL, Zhao J (2014) Plasmonic coupling in single silver nanosphere assemblies by polarization-dependent dark-field scattering spectroscopy. J Phys Chem C 118:13801–13808CrossRef Tian XD, Zhou YD, Thota S, Zou SL, Zhao J (2014) Plasmonic coupling in single silver nanosphere assemblies by polarization-dependent dark-field scattering spectroscopy. J Phys Chem C 118:13801–13808CrossRef
38.
Zurück zum Zitat Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961CrossRef Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961CrossRef
39.
Zurück zum Zitat Fang A, White SL, Masitas RA, Zamborini FP, Jain PK (2015) One-to-one correlation between structure and optical response in a heterogeneous distribution of plasmonic constructs. J Phys Chem C 119:24086–24094CrossRef Fang A, White SL, Masitas RA, Zamborini FP, Jain PK (2015) One-to-one correlation between structure and optical response in a heterogeneous distribution of plasmonic constructs. J Phys Chem C 119:24086–24094CrossRef
40.
Zurück zum Zitat Liu J, Kan C, Li Y, Xu H, Ni Y, Shi D (2015) Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods. Plasmonics 10:117–124CrossRef Liu J, Kan C, Li Y, Xu H, Ni Y, Shi D (2015) Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods. Plasmonics 10:117–124CrossRef
41.
Zurück zum Zitat Chen TH, Reinhard BM (2016) Assembling color on the nanoscale: multichromatic switchable pixels from plasmonic atoms and molecules. Adv Mater 28:3522–3527CrossRef Chen TH, Reinhard BM (2016) Assembling color on the nanoscale: multichromatic switchable pixels from plasmonic atoms and molecules. Adv Mater 28:3522–3527CrossRef
42.
Zurück zum Zitat Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726CrossRef Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726CrossRef
43.
Zurück zum Zitat Tang Y, Zhang W, Liu J, Zhang L, Huang W, Huo F, Tian D (2015) A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ. Nanoscale 7:6039–6044CrossRef Tang Y, Zhang W, Liu J, Zhang L, Huang W, Huo F, Tian D (2015) A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ. Nanoscale 7:6039–6044CrossRef
44.
Zurück zum Zitat Gulati A, Liao H, Hafner JH (2006) Monitoring gold nanorod synthesis by localized surface plasmon resonance. J Phys Chem B 110:22323–22327CrossRef Gulati A, Liao H, Hafner JH (2006) Monitoring gold nanorod synthesis by localized surface plasmon resonance. J Phys Chem B 110:22323–22327CrossRef
45.
Zurück zum Zitat Taz H, Ruther R, Malasi A, Yadavali S, Carr C, Nanda J, Kalyanaraman R (2015) In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of CdS thin films. J Phys Chem C 119:5033–5039CrossRef Taz H, Ruther R, Malasi A, Yadavali S, Carr C, Nanda J, Kalyanaraman R (2015) In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of CdS thin films. J Phys Chem C 119:5033–5039CrossRef
46.
Zurück zum Zitat Jang GG, Blake P, Roper DK (2013) Rate-limited electroless gold thin film growth: a real-time study. Langmuir 29:5476–5486CrossRef Jang GG, Blake P, Roper DK (2013) Rate-limited electroless gold thin film growth: a real-time study. Langmuir 29:5476–5486CrossRef
47.
Zurück zum Zitat Tang B, Xu S, An J, Zhao B, Xu W, Lombardi JR (2009) Kinetic effects of halide ions on the morphological evolution of silver nanoplates. Phys Chem Chem Phys 11:10286–10292CrossRef Tang B, Xu S, An J, Zhao B, Xu W, Lombardi JR (2009) Kinetic effects of halide ions on the morphological evolution of silver nanoplates. Phys Chem Chem Phys 11:10286–10292CrossRef
48.
Zurück zum Zitat Rodriguez-Lorenzo L, Romo-Herrera JM, Perez-Juste J, Alvarez-Puebla RA, Liz-Marzan LM (2011) Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. J Mater Chem 21:11544–11549CrossRef Rodriguez-Lorenzo L, Romo-Herrera JM, Perez-Juste J, Alvarez-Puebla RA, Liz-Marzan LM (2011) Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. J Mater Chem 21:11544–11549CrossRef
49.
Zurück zum Zitat Kedia A, Kumar PS (2013) Controlled reshaping and plasmon tuning mechanism of gold nanostars. J Mater Chem C 1:4540–4549CrossRef Kedia A, Kumar PS (2013) Controlled reshaping and plasmon tuning mechanism of gold nanostars. J Mater Chem C 1:4540–4549CrossRef
50.
Zurück zum Zitat Tang B, Xu S, Tao J, Wu Y, Xu W, Ozaki Y (2010) Two-dimensional correlation localized surface plasmon resonance spectroscopy for analysis of the interaction between metal nanoparticles and bovine serum albumin. J Phys Chem C 114:20990–20996CrossRef Tang B, Xu S, Tao J, Wu Y, Xu W, Ozaki Y (2010) Two-dimensional correlation localized surface plasmon resonance spectroscopy for analysis of the interaction between metal nanoparticles and bovine serum albumin. J Phys Chem C 114:20990–20996CrossRef
51.
Zurück zum Zitat Langhammer C, Larsson EM (2012) Nanoplasmonic in situ spectroscopy for catalysis applications. ACS Catal 2:2036–2045CrossRef Langhammer C, Larsson EM (2012) Nanoplasmonic in situ spectroscopy for catalysis applications. ACS Catal 2:2036–2045CrossRef
52.
Zurück zum Zitat Larsson EM, Langhammer C, Zoric I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326:1091–1094CrossRef Larsson EM, Langhammer C, Zoric I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326:1091–1094CrossRef
53.
Zurück zum Zitat Larsson EM, Millet J, Gustafsson S, Skoglundh M, Zhdanov VP, Langhammer C (2012) Real time indirect nanoplasmonic in situ spectroscopy of catalyst nanoparticle sintering. ACS Catal 2:238–245CrossRef Larsson EM, Millet J, Gustafsson S, Skoglundh M, Zhdanov VP, Langhammer C (2012) Real time indirect nanoplasmonic in situ spectroscopy of catalyst nanoparticle sintering. ACS Catal 2:238–245CrossRef
54.
Zurück zum Zitat Henry A-I, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291–9305CrossRef Henry A-I, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291–9305CrossRef
55.
Zurück zum Zitat Liu Y, Huang CZ (2013) Real-time dark-field scattering microscopic monitoring of the in situ growth of single ag@hg nanoalloys. ACS Nano 7:11026–11034CrossRef Liu Y, Huang CZ (2013) Real-time dark-field scattering microscopic monitoring of the in situ growth of single ag@hg nanoalloys. ACS Nano 7:11026–11034CrossRef
56.
Zurück zum Zitat Park Y, Lee C, Ryu S, Song H (2015) Ex situ and in situ surface plasmon monitoring of temperature-dependent structural evolution in galvanic replacement reactions at a single-particle level. J Phys Chem C 119:20125–20135CrossRef Park Y, Lee C, Ryu S, Song H (2015) Ex situ and in situ surface plasmon monitoring of temperature-dependent structural evolution in galvanic replacement reactions at a single-particle level. J Phys Chem C 119:20125–20135CrossRef
57.
Zurück zum Zitat Wang Y, Zou HY, Huang CZ (2015) Real-time monitoring of oxidative etching on single Ag nanocubes via light-scattering dark-field microscopy imaging. Nanoscale 7:15209–15213CrossRef Wang Y, Zou HY, Huang CZ (2015) Real-time monitoring of oxidative etching on single Ag nanocubes via light-scattering dark-field microscopy imaging. Nanoscale 7:15209–15213CrossRef
58.
Zurück zum Zitat Shegai T, Langhammer C (2011) Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv Mater 23:4409–4414CrossRef Shegai T, Langhammer C (2011) Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv Mater 23:4409–4414CrossRef
59.
Zurück zum Zitat Cheng J, Liu Y, Cheng X, He Y, Yeung ES (2010) Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy. Anal Chem 82:8744–8749CrossRef Cheng J, Liu Y, Cheng X, He Y, Yeung ES (2010) Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy. Anal Chem 82:8744–8749CrossRef
60.
Zurück zum Zitat Shi L, Jing C, Ma W, Li D-W, Halls JE, Marken F, Long Y-T (2013) Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew Chem Int Ed 52:6011–6014CrossRef Shi L, Jing C, Ma W, Li D-W, Halls JE, Marken F, Long Y-T (2013) Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew Chem Int Ed 52:6011–6014CrossRef
61.
Zurück zum Zitat Gao PF, Yuan BF, Gao MX, Li RS, Ma J, Zou HY, Li YF, Li M, Huang CZ (2015) Visual identification of light-driven breakage of the silver-dithiocarbamate bond by single plasmonic nanoprobes. Sci Rep 5:15427CrossRef Gao PF, Yuan BF, Gao MX, Li RS, Ma J, Zou HY, Li YF, Li M, Huang CZ (2015) Visual identification of light-driven breakage of the silver-dithiocarbamate bond by single plasmonic nanoprobes. Sci Rep 5:15427CrossRef
62.
Zurück zum Zitat Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3:598–602CrossRef Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3:598–602CrossRef
63.
Zurück zum Zitat Collins SSE, Cittadini M, Pecharroman C, Martucci A, Mulvaney P (2015) Hydrogen spillover between single gold nanorods and metal oxide supports: a surface plasmon spectroscopy study. ACS Nano 9:7846–7856CrossRef Collins SSE, Cittadini M, Pecharroman C, Martucci A, Mulvaney P (2015) Hydrogen spillover between single gold nanorods and metal oxide supports: a surface plasmon spectroscopy study. ACS Nano 9:7846–7856CrossRef
64.
Zurück zum Zitat Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10:631–636CrossRef Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10:631–636CrossRef
65.
Zurück zum Zitat Seo D, Park G, Song H (2012) Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. J Am Chem Soc 134:1221–1227CrossRef Seo D, Park G, Song H (2012) Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. J Am Chem Soc 134:1221–1227CrossRef
66.
Zurück zum Zitat Tittl A, Yin X, Giessen H, Tian X-D, Tian Z-Q, Kremers C, Chigrin DN, Liu N (2013) Plasmonic smart dust for probing local chemical reactions. Nano Lett 13:1816–1821CrossRef Tittl A, Yin X, Giessen H, Tian X-D, Tian Z-Q, Kremers C, Chigrin DN, Liu N (2013) Plasmonic smart dust for probing local chemical reactions. Nano Lett 13:1816–1821CrossRef
67.
Zurück zum Zitat Jing C, Rawson FJ, Zhou H, Shi X, Li W-H, Li D-W, Long Y-T (2014) New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal Chem 86:5513–5518CrossRef Jing C, Rawson FJ, Zhou H, Shi X, Li W-H, Li D-W, Long Y-T (2014) New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal Chem 86:5513–5518CrossRef
68.
Zurück zum Zitat Cennamo N, D’Agostino G, Dona A, Dacarro G, Pallavicini P, Pesavento M, Zeni L (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors 13:14676–14686CrossRef Cennamo N, D’Agostino G, Dona A, Dacarro G, Pallavicini P, Pesavento M, Zeni L (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors 13:14676–14686CrossRef
69.
Zurück zum Zitat Sherry LJ, Jin RC, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065CrossRef Sherry LJ, Jin RC, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065CrossRef
70.
Zurück zum Zitat Bukasov R, Ali TA, Nordlander P, Shumaker-Parry JS (2010) Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano 4:6639–6650CrossRef Bukasov R, Ali TA, Nordlander P, Shumaker-Parry JS (2010) Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano 4:6639–6650CrossRef
71.
Zurück zum Zitat Bolduc OR, Masson J-F (2011) Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques. Anal Chem 83:8057–8062CrossRef Bolduc OR, Masson J-F (2011) Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques. Anal Chem 83:8057–8062CrossRef
72.
Zurück zum Zitat Chung T, Lee S-Y, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929CrossRef Chung T, Lee S-Y, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929CrossRef
73.
Zurück zum Zitat Lin VK, Teo SL, Marty R, Arbouet A, Girard C, Alarcon-Llado E, Liu SH, Han MY, Tripathy S, Mlayah A (2010) Dual wavelength sensing based on interacting gold nanodisk trimers. Nanotechnology 21:305501CrossRef Lin VK, Teo SL, Marty R, Arbouet A, Girard C, Alarcon-Llado E, Liu SH, Han MY, Tripathy S, Mlayah A (2010) Dual wavelength sensing based on interacting gold nanodisk trimers. Nanotechnology 21:305501CrossRef
74.
Zurück zum Zitat Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652CrossRef Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652CrossRef
75.
Zurück zum Zitat Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663CrossRef Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663CrossRef
76.
Zurück zum Zitat Polavarapu L, Liz-Marzan LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15:5288–5300CrossRef Polavarapu L, Liz-Marzan LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15:5288–5300CrossRef
77.
Zurück zum Zitat Wang H, Chen D, Wei Y, Yu L, Zhang P, Zhao J (2011) A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system. Spectrochim Acta A Mol Biomol Spectrosc 79:2012–2016CrossRef Wang H, Chen D, Wei Y, Yu L, Zhang P, Zhao J (2011) A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system. Spectrochim Acta A Mol Biomol Spectrosc 79:2012–2016CrossRef
78.
Zurück zum Zitat Bingham JM, Anker JN, Kreno LE, Van Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132:17358–17359CrossRef Bingham JM, Anker JN, Kreno LE, Van Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132:17358–17359CrossRef
79.
Zurück zum Zitat Kazuma E, Tatsuma T (2014) Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale 6:2397–2405CrossRef Kazuma E, Tatsuma T (2014) Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale 6:2397–2405CrossRef
80.
Zurück zum Zitat Huang D, Hu T, Chen N, Zhang W, Di J (2014) Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor. Anal Chim Acta 825:51–56CrossRef Huang D, Hu T, Chen N, Zhang W, Di J (2014) Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor. Anal Chim Acta 825:51–56CrossRef
81.
Zurück zum Zitat Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, Yanagida S (2015) Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. ACS Nano 9:1895–1904CrossRef Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, Yanagida S (2015) Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. ACS Nano 9:1895–1904CrossRef
82.
Zurück zum Zitat Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun 48:8999–9010CrossRef Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun 48:8999–9010CrossRef
83.
Zurück zum Zitat Feuz L, Jonsson MP, Hook F (2012) Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. Nano Lett 12:873–879CrossRef Feuz L, Jonsson MP, Hook F (2012) Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. Nano Lett 12:873–879CrossRef
84.
Zurück zum Zitat Chen P, Liedberg B (2014) Curvature of the localized surface plasmon resonance peak. Anal Chem 86:7399–7405CrossRef Chen P, Liedberg B (2014) Curvature of the localized surface plasmon resonance peak. Anal Chem 86:7399–7405CrossRef
85.
Zurück zum Zitat Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P (2012) Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett 12:1655–1659CrossRef Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P (2012) Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett 12:1655–1659CrossRef
86.
Zurück zum Zitat Ho FH, Wu Y-H, Ujihara M, Imae T (2012) A solution-based nano-plasmonic sensing technique by using gold nanorods. Analyst 137:2545–2548CrossRef Ho FH, Wu Y-H, Ujihara M, Imae T (2012) A solution-based nano-plasmonic sensing technique by using gold nanorods. Analyst 137:2545–2548CrossRef
87.
Zurück zum Zitat Liu Y, Zhao Y, Wang Y, Li CM (2015) Polyamine-capped gold nanorod as a localized surface Plasmon resonance probe for rapid and sensitive copper(II) ion detection. J Colloid Interface Sci 439:7–11CrossRef Liu Y, Zhao Y, Wang Y, Li CM (2015) Polyamine-capped gold nanorod as a localized surface Plasmon resonance probe for rapid and sensitive copper(II) ion detection. J Colloid Interface Sci 439:7–11CrossRef
88.
Zurück zum Zitat Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759CrossRef Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759CrossRef
89.
Zurück zum Zitat Ma X, Truong PL, Anh NH, Sim SJ (2015) Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein. Biosens Bioelectron 67:59–65CrossRef Ma X, Truong PL, Anh NH, Sim SJ (2015) Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein. Biosens Bioelectron 67:59–65CrossRef
90.
Zurück zum Zitat Ruemmele JA, Hall WP, Ruvuna LK, Van Duyne RP (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85:4560–4566CrossRef Ruemmele JA, Hall WP, Ruvuna LK, Van Duyne RP (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85:4560–4566CrossRef
91.
Zurück zum Zitat Chen P, Chung MT, McHugh W, Nidetz R, Li Y, Fu J, Cornell TT, Shanley TP, Kurabayashi K (2015) Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9:4173–4181CrossRef Chen P, Chung MT, McHugh W, Nidetz R, Li Y, Fu J, Cornell TT, Shanley TP, Kurabayashi K (2015) Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9:4173–4181CrossRef
Metadaten
Titel
In Situ Localized Surface Plasmon Resonance Spectroscopy for Gold and Silver Nanoparticles
verfasst von
Ji Zhou
Bin Tang
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56322-9_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.