Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2019

20.05.2019 | ESOMAT 2018

In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires

verfasst von: Saeid Pourbabak, Andrey Orekhov, Vahid Samaee, Bert Verlinden, Jan Van Humbeeck, Dominique Schryvers

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In-situ transmission electron microscopy tensile straining is used to study the stress induced martensitic transformation in Ni50.8Ti49.2. Two microwire samples with different heat treatment are investigated from which one single crystal and three polycrystalline TEM specimens, the latter with micro- and nano-size grains, have been produced. The measured Young’s modulus for all TEM specimens is around 70 GPa, considerably higher than the averaged 55 GPa of the original microwire sample. The height of the superelastic stress plateau shows an inverse relationship with the specimen thickness for the polycrystalline specimens. Martensite starts nucleating within the elastic region of the stress–strain curve and on the edges of the specimens while also grain boundaries act as nucleation sites in the polycrystalline specimens. When a martensite plate reaches a grain boundary in the polycrystalline specimen, it initiates the transformation in the neighboring grain at the other side of the grain boundary. In later stages martensite plates coalesce at higher loads in the stress plateau. In highly strained specimens, residual martensite remains after release.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRef
2.
Zurück zum Zitat Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge
3.
Zurück zum Zitat Sakamoto H (2002) Distinction between thermal and stress-induced martensitic transformations and inhomogeneity in internal stress. Mater Trans 43(9):2249–2255CrossRef Sakamoto H (2002) Distinction between thermal and stress-induced martensitic transformations and inhomogeneity in internal stress. Mater Trans 43(9):2249–2255CrossRef
4.
Zurück zum Zitat Miyazaki S, Otsuka K, Suzuki Y (1981) Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy. Scr Metall 15(3):287–292CrossRef Miyazaki S, Otsuka K, Suzuki Y (1981) Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy. Scr Metall 15(3):287–292CrossRef
5.
Zurück zum Zitat Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43(8):1243–1281CrossRef Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43(8):1243–1281CrossRef
6.
Zurück zum Zitat Shaw JA, Kyriakides S (1997) On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater 45(2):683–700CrossRef Shaw JA, Kyriakides S (1997) On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater 45(2):683–700CrossRef
7.
Zurück zum Zitat Otsuka K, Wayman CM, Nakai K, Sakamoto H, Shimizu K (1976) Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys. Acta Metall 24(3):207–226CrossRef Otsuka K, Wayman CM, Nakai K, Sakamoto H, Shimizu K (1976) Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys. Acta Metall 24(3):207–226CrossRef
8.
Zurück zum Zitat Yamauchi K, Ohkata I, Tsuchiya K, Miyazaki S (eds) (2011) Shape memory and superelastic alloys. Woodhead Publishing, Cambridge Yamauchi K, Ohkata I, Tsuchiya K, Miyazaki S (eds) (2011) Shape memory and superelastic alloys. Woodhead Publishing, Cambridge
9.
Zurück zum Zitat Yoneyama T, Miyazaki S (2008) Shape memory alloys for biomedical applications. Woodhead Publishing, Cambridge Yoneyama T, Miyazaki S (2008) Shape memory alloys for biomedical applications. Woodhead Publishing, Cambridge
10.
Zurück zum Zitat Elahinia MH, Miyazaki S (2015) Shape memory alloy actuators: design, fabrication, and experimental evaluation. Wiley, New YorkCrossRef Elahinia MH, Miyazaki S (2015) Shape memory alloy actuators: design, fabrication, and experimental evaluation. Wiley, New YorkCrossRef
11.
Zurück zum Zitat Shaw JA, Churchill CB, Iadicola MA (2008) Tips and tricks for characterizing shape memory alloy wire: part 1-differential scanning calorimetry and basic phenomena. Exp Tech 32(5):55–62CrossRef Shaw JA, Churchill CB, Iadicola MA (2008) Tips and tricks for characterizing shape memory alloy wire: part 1-differential scanning calorimetry and basic phenomena. Exp Tech 32(5):55–62CrossRef
12.
Zurück zum Zitat Baron M-P, Morin M (1997) Stress-induced transformation and temperature-induced transformation in Cu-Zn-Al single crystals. J. Phys. IV France 07(C5):C5-525–C5-530CrossRef Baron M-P, Morin M (1997) Stress-induced transformation and temperature-induced transformation in Cu-Zn-Al single crystals. J. Phys. IV France 07(C5):C5-525–C5-530CrossRef
13.
Zurück zum Zitat Rao A, Srinivasa AR, Reddy JN (2015) Design of shape memory alloy (SMA) actuators. Springer International Publishing, BerlinCrossRef Rao A, Srinivasa AR, Reddy JN (2015) Design of shape memory alloy (SMA) actuators. Springer International Publishing, BerlinCrossRef
14.
Zurück zum Zitat Duerig TW (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Oxford Duerig TW (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Oxford
15.
Zurück zum Zitat Lagoudas DC (ed) (2008) Shape memory alloys: modeling and engineering applications. Springer, New York Lagoudas DC (ed) (2008) Shape memory alloys: modeling and engineering applications. Springer, New York
16.
Zurück zum Zitat Truskinovsky L, Vainchtein A (2004) The origin of nucleation peak in transformational plasticity. J Mech Phys Solids 52(6):1421–1446CrossRef Truskinovsky L, Vainchtein A (2004) The origin of nucleation peak in transformational plasticity. J Mech Phys Solids 52(6):1421–1446CrossRef
17.
Zurück zum Zitat Wilsdorf HGF (1958) Apparatus for the deformation of foils in an electron microscope. Rev Sci Instrum 29(4):323–324CrossRef Wilsdorf HGF (1958) Apparatus for the deformation of foils in an electron microscope. Rev Sci Instrum 29(4):323–324CrossRef
18.
Zurück zum Zitat Hardiman B, Clark WAT, Wagoner RH (1987) Automated jet polishing of transmission electron microscope specimens for in situ straining. J Electron Microsc Tech 5(2):199–202CrossRef Hardiman B, Clark WAT, Wagoner RH (1987) Automated jet polishing of transmission electron microscope specimens for in situ straining. J Electron Microsc Tech 5(2):199–202CrossRef
19.
Zurück zum Zitat Xu YB, Wang RJ, Wang ZG (1995) In-situ investigation of stress-induced martensitic transformation in the Ti-Ni shape memory alloy during deformation. Mater Lett 24(6):355–358CrossRef Xu YB, Wang RJ, Wang ZG (1995) In-situ investigation of stress-induced martensitic transformation in the Ti-Ni shape memory alloy during deformation. Mater Lett 24(6):355–358CrossRef
20.
Zurück zum Zitat Jiang X, Hida M, Takemoto Y, Sakakibara A, Yasuda H, Mori H (1997) In situ observation of stress-induced martensitic transformation and plastic deformation in TiNi alloy. Mater Sci Eng A 238(2):303–308CrossRef Jiang X, Hida M, Takemoto Y, Sakakibara A, Yasuda H, Mori H (1997) In situ observation of stress-induced martensitic transformation and plastic deformation in TiNi alloy. Mater Sci Eng A 238(2):303–308CrossRef
21.
Zurück zum Zitat Tirry W, Schryvers D (2008) In situ transmission electron microscopy of stress-induced martensite with focus on martensite twinning. Mater Sci Eng A 481–482:420–425CrossRef Tirry W, Schryvers D (2008) In situ transmission electron microscopy of stress-induced martensite with focus on martensite twinning. Mater Sci Eng A 481–482:420–425CrossRef
22.
Zurück zum Zitat Mao SC et al (2013) Stress-induced martensitic transformation in nanometric NiTi shape memory alloy strips: an in situ TEM study of the thickness/size effect. J Alloy Compd 579:100–111CrossRef Mao SC et al (2013) Stress-induced martensitic transformation in nanometric NiTi shape memory alloy strips: an in situ TEM study of the thickness/size effect. J Alloy Compd 579:100–111CrossRef
23.
Zurück zum Zitat Pfetzing-Micklich J, Wieczorek N, Simon T, Maaß B, Eggeler G (2014) Direct microstructural evidence for the stress induced formation of martensite during nanoindentation of NiTi. Mater Sci Eng A 591:33–37CrossRef Pfetzing-Micklich J, Wieczorek N, Simon T, Maaß B, Eggeler G (2014) Direct microstructural evidence for the stress induced formation of martensite during nanoindentation of NiTi. Mater Sci Eng A 591:33–37CrossRef
24.
Zurück zum Zitat Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Rational Mech Anal 100(1):13–52CrossRef Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Rational Mech Anal 100(1):13–52CrossRef
25.
Zurück zum Zitat Samaee V, Gatti R, Devincre B, Pardoen T, Schryvers D, Idrissi H (2018) Dislocation driven nanosample plasticity: new insights from quantitative in situ TEM tensile testing. Sci Rep 8(1):12012CrossRef Samaee V, Gatti R, Devincre B, Pardoen T, Schryvers D, Idrissi H (2018) Dislocation driven nanosample plasticity: new insights from quantitative in situ TEM tensile testing. Sci Rep 8(1):12012CrossRef
26.
Zurück zum Zitat Samaeeaghmiyoni V, Idrissi H, Groten J, Schwaiger R, Schryvers D (2017) Quantitative in situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach. Micron 94:66–73CrossRef Samaeeaghmiyoni V, Idrissi H, Groten J, Schwaiger R, Schryvers D (2017) Quantitative in situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach. Micron 94:66–73CrossRef
27.
Zurück zum Zitat Idrissi H, Bollinger C, Boioli F, Schryvers D, Cordier P (2016) Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing. Sci Adv 2(3):e1501671CrossRef Idrissi H, Bollinger C, Boioli F, Schryvers D, Cordier P (2016) Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing. Sci Adv 2(3):e1501671CrossRef
28.
Zurück zum Zitat Malis T, Cheng SC, Egerton RF (1988) EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8(2):193–200CrossRef Malis T, Cheng SC, Egerton RF (1988) EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8(2):193–200CrossRef
29.
Zurück zum Zitat Rauch EF, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P (2010) Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z für Kristallographie Int J Struct Phys Chem Aspects Cryst Mater 225(2–3):103–109 Rauch EF, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P (2010) Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z für Kristallographie Int J Struct Phys Chem Aspects Cryst Mater 225(2–3):103–109
30.
Zurück zum Zitat Laplanche G, Birk T, Schneider S, Frenzel J, Eggeler G (2017) Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys. Acta Mater 127:143–152CrossRef Laplanche G, Birk T, Schneider S, Frenzel J, Eggeler G (2017) Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys. Acta Mater 127:143–152CrossRef
31.
Zurück zum Zitat Gall K, Tyber J, Brice V, Frick CP, Maier HJ, Morgan N (2005) Tensile deformation of NiTi wires. J Biomed Mater Res Part A 75A(4):810–823CrossRef Gall K, Tyber J, Brice V, Frick CP, Maier HJ, Morgan N (2005) Tensile deformation of NiTi wires. J Biomed Mater Res Part A 75A(4):810–823CrossRef
32.
Zurück zum Zitat Churchill CB, Shaw JA, Iadicola MA (2009) Tips and tricks for characterizing shape memory alloy wire: part 3-localization and propagation phenomena. Exp Tech 33(5):70–78CrossRef Churchill CB, Shaw JA, Iadicola MA (2009) Tips and tricks for characterizing shape memory alloy wire: part 3-localization and propagation phenomena. Exp Tech 33(5):70–78CrossRef
33.
Zurück zum Zitat Šittner P, Heller L, Pilch J, Curfs C, Alonso T, Favier D (2014) Young’s modulus of austenite and martensite phases in superelastic NiTi wires. J Mater Eng Perform 23(7):2303–2314CrossRef Šittner P, Heller L, Pilch J, Curfs C, Alonso T, Favier D (2014) Young’s modulus of austenite and martensite phases in superelastic NiTi wires. J Mater Eng Perform 23(7):2303–2314CrossRef
34.
Zurück zum Zitat Wagner MF-X, Windl W (2009) Elastic anisotropy of Ni4Ti3 from first principles. Scr Mater 60(4):207–210CrossRef Wagner MF-X, Windl W (2009) Elastic anisotropy of Ni4Ti3 from first principles. Scr Mater 60(4):207–210CrossRef
35.
Zurück zum Zitat Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater 52(1):137–147CrossRef Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater 52(1):137–147CrossRef
36.
Zurück zum Zitat Schryvers D (1993) Microtwin sequences in thermoelastic NixAl100-x martensite studied by conventional and high-resolution transmission electron microscopy. Philos Mag A 68(5):1017–1032CrossRef Schryvers D (1993) Microtwin sequences in thermoelastic NixAl100-x martensite studied by conventional and high-resolution transmission electron microscopy. Philos Mag A 68(5):1017–1032CrossRef
37.
Zurück zum Zitat Roitburd L (1978) Martensitic transformation as a typical phase transformation in solids. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid state physics, vol 33. Academic Press, New York, pp 317–390 Roitburd L (1978) Martensitic transformation as a typical phase transformation in solids. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid state physics, vol 33. Academic Press, New York, pp 317–390
38.
Zurück zum Zitat Kohn RV, Müller S (1992) Branching of twins near an austenite—twinned-martensite interface. Philos Mag A 66(5):697–715CrossRef Kohn RV, Müller S (1992) Branching of twins near an austenite—twinned-martensite interface. Philos Mag A 66(5):697–715CrossRef
39.
Zurück zum Zitat Khachaturyan AG, Shatalov GA (1969) Theory of Macroscopic periodicity for a phase transition in the solid state. Soviet J Exp Theor Phys 29:557 Khachaturyan AG, Shatalov GA (1969) Theory of Macroscopic periodicity for a phase transition in the solid state. Soviet J Exp Theor Phys 29:557
Metadaten
Titel
In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires
verfasst von
Saeid Pourbabak
Andrey Orekhov
Vahid Samaee
Bert Verlinden
Jan Van Humbeeck
Dominique Schryvers
Publikationsdatum
20.05.2019
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2019
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-019-00217-6

Weitere Artikel der Ausgabe 2/2019

Shape Memory and Superelasticity 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.