Skip to main content
Erschienen in: Journal of Materials Science 4/2017

26.10.2016 | Original Paper

In vitro degradation and cytocompatibility of g-MgO whiskers/PLLA composites

verfasst von: Wei Wen, Ziping Zou, Binghong Luo, Changren Zhou

Erschienen in: Journal of Materials Science | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In vitro degradation properties and cytocompatibility of surface-grafted magnesia whiskers/poly(l-lactide) (g-MgO–Ws/PLLA) composite films which obtained by solution casting method were studied in this work. In vitro degradation experiments of the samples were carried out in a PBS solution at 37 °C with a pH of 7.4. Changes in weight, pH value, crystallization and melting behaviors, surface morphology and chemical composition, and tensile property of the g-MgO–Ws/PLLA composite films with the degradation time were characterized, from which the related degradation mechanism of the composite was concluded. Results showed that the weight loss of the g-MgO–Ws/PLLA composite films was slightly higher than that of the neat PLLA. The alkaline g-MgO–Ws can neutralize the acidity of degradation products of PLLA to some extent and maintain the tensile properties of the films well in the early degradation stage compared with neat PLLA. With the degradation, the crystallinity of PLLA matrix increased first and then decreased. In vitro cell culture results, based on the optical density value, alkaline phosphate (ALP) activity measurement, field emission scanning electron microscope, and confocal laser scanning microscopy observation, revealed that the g-MgO–Ws/PLLA composite films were not only in favor of cells adhesion, spreading, and proliferation, but also can significantly upregulate the ALP activity and promote the osteogenic differentiation of MC3T3-E1 cells compared with the neat PLLA film.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
2.
Zurück zum Zitat Moravej M, Mantovani D (2011) Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 12:4250–4270CrossRef Moravej M, Mantovani D (2011) Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 12:4250–4270CrossRef
3.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef
4.
Zurück zum Zitat Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef
5.
Zurück zum Zitat Park JE, Todo M (2011) Development and characterization of reinforced poly (l-lactide) scaffolds for bone tissue engineering. J Mater Sci Mater Med 22:1171–1182CrossRef Park JE, Todo M (2011) Development and characterization of reinforced poly (l-lactide) scaffolds for bone tissue engineering. J Mater Sci Mater Med 22:1171–1182CrossRef
6.
Zurück zum Zitat Jiang XL, Zhang TZ, He SY, Ling JJ, Gu N, Zhang Y, Zhou XF, Wang X, Cheng L (2012) Bacterial adhesion on honeycomb-structured poly (l-lactic acid) surface with Ag nanoparticles. J Biomed Nanotechnol 8:791–799CrossRef Jiang XL, Zhang TZ, He SY, Ling JJ, Gu N, Zhang Y, Zhou XF, Wang X, Cheng L (2012) Bacterial adhesion on honeycomb-structured poly (l-lactic acid) surface with Ag nanoparticles. J Biomed Nanotechnol 8:791–799CrossRef
7.
Zurück zum Zitat Liu PF, Yu H, Sun Y, Zhu MJ, Duan YR (2011) A mPEG-PLGA-b-PLLA copolymer carrier for adriamycin and siRNA delivery. Biomaterials 33:4403–4412CrossRef Liu PF, Yu H, Sun Y, Zhu MJ, Duan YR (2011) A mPEG-PLGA-b-PLLA copolymer carrier for adriamycin and siRNA delivery. Biomaterials 33:4403–4412CrossRef
8.
Zurück zum Zitat Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRef Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRef
9.
Zurück zum Zitat Li X, Chu CL, Liu L, Liu XK, Bai J, Guo C, Xue F, Lin PH, Chu PK (2015) Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Biomaterials 49:135–144CrossRef Li X, Chu CL, Liu L, Liu XK, Bai J, Guo C, Xue F, Lin PH, Chu PK (2015) Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Biomaterials 49:135–144CrossRef
10.
Zurück zum Zitat Yuan YS, Wong MS, Wang SS (1996) Mechanical behavior of MgO-whisker reinforced (Bi, Pb)2Sr2Ca2Cu3Oy high-temperature superconducting composite. J Mater Res 11:1645–1652CrossRef Yuan YS, Wong MS, Wang SS (1996) Mechanical behavior of MgO-whisker reinforced (Bi, Pb)2Sr2Ca2Cu3Oy high-temperature superconducting composite. J Mater Res 11:1645–1652CrossRef
11.
Zurück zum Zitat Li YH, Sun XS (2010) Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of l-lactic acid and surface-hydroxylated MgO. Biomacromolecules 11:1847–1855CrossRef Li YH, Sun XS (2010) Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of l-lactic acid and surface-hydroxylated MgO. Biomacromolecules 11:1847–1855CrossRef
12.
Zurück zum Zitat Ma FQ, Lu LX, Wang ZM, Sun ZJ, Zhang FF, Zheng YF (2011) Nanocomposites of poly(l-lactide) and surface modified magnesia nanoparticles: fabrication, mechanical property and biodegradability. J Phys Chem Solids 72:111–116CrossRef Ma FQ, Lu LX, Wang ZM, Sun ZJ, Zhang FF, Zheng YF (2011) Nanocomposites of poly(l-lactide) and surface modified magnesia nanoparticles: fabrication, mechanical property and biodegradability. J Phys Chem Solids 72:111–116CrossRef
13.
Zurück zum Zitat Zreiqat H, Howlett CR, Zannettino A, Evans P, Tanzil GS, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implant. J Biomed Mater Res 62:175–184CrossRef Zreiqat H, Howlett CR, Zannettino A, Evans P, Tanzil GS, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implant. J Biomed Mater Res 62:175–184CrossRef
14.
Zurück zum Zitat Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692CrossRef Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692CrossRef
15.
Zurück zum Zitat Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734CrossRef Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734CrossRef
16.
Zurück zum Zitat Wen W, Luo BH, Qin XP, Li CR, Liu MX, Ding S, Zhou CR (2015) Strengthening and toughening of poly(l-lactide) composites by surface modified MgO whiskers. Appl Surf Sci 332:215–223CrossRef Wen W, Luo BH, Qin XP, Li CR, Liu MX, Ding S, Zhou CR (2015) Strengthening and toughening of poly(l-lactide) composites by surface modified MgO whiskers. Appl Surf Sci 332:215–223CrossRef
17.
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef
18.
Zurück zum Zitat Wu L, Ding J (2004) In vitro degradation of three-dimensional porous poly (d, l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830CrossRef Wu L, Ding J (2004) In vitro degradation of three-dimensional porous poly (d, l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830CrossRef
19.
Zurück zum Zitat Zhang K, Wang YB, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly (l-lactide)/bioactive glass composites. Biomaterials 25:2489–2500CrossRef Zhang K, Wang YB, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly (l-lactide)/bioactive glass composites. Biomaterials 25:2489–2500CrossRef
20.
Zurück zum Zitat Chen HM, Feng CX, Zhang WB, Yang JH, Huang T, Zhang N, Wang Y (2013) Hydrolytic degradation behavior of poly(l-lactide)/carbon nanotubes nanocomposites. Polym Degrad Stab 98:198–208CrossRef Chen HM, Feng CX, Zhang WB, Yang JH, Huang T, Zhang N, Wang Y (2013) Hydrolytic degradation behavior of poly(l-lactide)/carbon nanotubes nanocomposites. Polym Degrad Stab 98:198–208CrossRef
21.
Zurück zum Zitat Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr Polym 91:377–384CrossRef Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr Polym 91:377–384CrossRef
22.
Zurück zum Zitat Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef
23.
Zurück zum Zitat Larrañaga A, Aldazabal P, Martin FJ, Sarasua JR (2014) Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles. Polym Degrad Stab 110:121–128CrossRef Larrañaga A, Aldazabal P, Martin FJ, Sarasua JR (2014) Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles. Polym Degrad Stab 110:121–128CrossRef
24.
Zurück zum Zitat Wu YH, Li N, Cheng Y, Zheng YF, Han Y (2013) In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite. J Mater Sci Technol 29:545–550CrossRef Wu YH, Li N, Cheng Y, Zheng YF, Han Y (2013) In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite. J Mater Sci Technol 29:545–550CrossRef
25.
Zurück zum Zitat Joaquin RR, Vidaurre A, Isabel CC, Lebourg M (2015) Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stab 119:121–131CrossRef Joaquin RR, Vidaurre A, Isabel CC, Lebourg M (2015) Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stab 119:121–131CrossRef
26.
Zurück zum Zitat Mitsuhiro S, Yusuke I, Masanao M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 10:3557–3564 Mitsuhiro S, Yusuke I, Masanao M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 10:3557–3564
27.
Zurück zum Zitat Zou ZP, Luo C, Luo BH (2016) Synergistic reinforcing and toughening of poly(l-lactide) composites with surface-modified MgO and chitin whiskers. Compos Sci Technol 133:128–135CrossRef Zou ZP, Luo C, Luo BH (2016) Synergistic reinforcing and toughening of poly(l-lactide) composites with surface-modified MgO and chitin whiskers. Compos Sci Technol 133:128–135CrossRef
28.
Zurück zum Zitat Loo JSC, Ooi CP, Boey FYC (2005) Degradation of poly (lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials 26:1359–1367CrossRef Loo JSC, Ooi CP, Boey FYC (2005) Degradation of poly (lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials 26:1359–1367CrossRef
29.
Zurück zum Zitat Lorenzo MLD (2005) Crystallization behavior of poly (l-lactic acid). Eur Polym J 41:569–575CrossRef Lorenzo MLD (2005) Crystallization behavior of poly (l-lactic acid). Eur Polym J 41:569–575CrossRef
30.
Zurück zum Zitat He Y, Fan Z, Wei J, Li S (2006) Morphology and melt crystallization of poly(l-lactide) obtained by ring opening polymerization of l-lactide with zinc catalyst. Polym Eng Sci 46:1583–1589CrossRef He Y, Fan Z, Wei J, Li S (2006) Morphology and melt crystallization of poly(l-lactide) obtained by ring opening polymerization of l-lactide with zinc catalyst. Polym Eng Sci 46:1583–1589CrossRef
31.
Zurück zum Zitat Sim KJ, Han SO (2010) Dynamic mechanical and thermal properties of red algae fiber reinforced poly(lactic acid) biocomposites. Macromol Res 18:489–495CrossRef Sim KJ, Han SO (2010) Dynamic mechanical and thermal properties of red algae fiber reinforced poly(lactic acid) biocomposites. Macromol Res 18:489–495CrossRef
32.
Zurück zum Zitat Suksut B, Deeprasertkul C (2011) Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. J Polym Environ 19:288–296CrossRef Suksut B, Deeprasertkul C (2011) Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. J Polym Environ 19:288–296CrossRef
33.
Zurück zum Zitat Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) PDLLA/bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25:3013–3021CrossRef Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) PDLLA/bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25:3013–3021CrossRef
34.
Zurück zum Zitat Burridge K, Fath K (1989) Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton. BioEssays 10:104–108CrossRef Burridge K, Fath K (1989) Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton. BioEssays 10:104–108CrossRef
35.
Zurück zum Zitat Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681CrossRef Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681CrossRef
36.
Zurück zum Zitat Hott M, Noel B, Bernache-Assolant D, Rey C, Marie PJ (1997) Proliferation and differentiation of human trabecular osteoblastic cells on hydroxyapatite. J Biomed Mater Res 37:508–516CrossRef Hott M, Noel B, Bernache-Assolant D, Rey C, Marie PJ (1997) Proliferation and differentiation of human trabecular osteoblastic cells on hydroxyapatite. J Biomed Mater Res 37:508–516CrossRef
37.
Zurück zum Zitat Li N, Chen G, Liu J, Xia Y, Chen HB, Tang H, Zhang FM, Gu N (2014) Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells. Appl Mater Interfaces 6:17134–17143CrossRef Li N, Chen G, Liu J, Xia Y, Chen HB, Tang H, Zhang FM, Gu N (2014) Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells. Appl Mater Interfaces 6:17134–17143CrossRef
38.
Zurück zum Zitat Wei B, Shang YX, Li M, Jiang J, Zhang H (2014) Cytoskeleton changes of airway smooth muscle cells in juvenile rats with airway remodeling in asthma and the RhoA/ROCK signaling pathway mechanism. Genet Mol Res 13:559–569CrossRef Wei B, Shang YX, Li M, Jiang J, Zhang H (2014) Cytoskeleton changes of airway smooth muscle cells in juvenile rats with airway remodeling in asthma and the RhoA/ROCK signaling pathway mechanism. Genet Mol Res 13:559–569CrossRef
39.
Zurück zum Zitat Tao CT (2006) Polyetherimide membrane formation by the cononsolvent system and its biocompatibility of MG63 cell line. J Membr Sci 269:66–74CrossRef Tao CT (2006) Polyetherimide membrane formation by the cononsolvent system and its biocompatibility of MG63 cell line. J Membr Sci 269:66–74CrossRef
40.
Zurück zum Zitat Busa WB, Nuccitelli R (1984) Metabolic regulation via intracellular pH. Am J Physiol Regul Integr Comp Physiol 246:409–438CrossRef Busa WB, Nuccitelli R (1984) Metabolic regulation via intracellular pH. Am J Physiol Regul Integr Comp Physiol 246:409–438CrossRef
Metadaten
Titel
In vitro degradation and cytocompatibility of g-MgO whiskers/PLLA composites
verfasst von
Wei Wen
Ziping Zou
Binghong Luo
Changren Zhou
Publikationsdatum
26.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0525-0

Weitere Artikel der Ausgabe 4/2017

Journal of Materials Science 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.