Skip to main content

2017 | OriginalPaper | Buchkapitel

Inception Makes Non-malleable Codes Stronger

verfasst von : Divesh Aggarwal, Tomasz Kazana, Maciej Obremski

Erschienen in: Theory of Cryptography

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Non-malleable codes (NMCs), introduced by Dziembowski et al. [DPW10], provide a useful message integrity guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. NMCs have emerged as a fundamental object at the intersection of coding theory and cryptography.
A large body of the recent work has focused on various constructions of non-malleable codes in the split-state model. Many variants of NMCs have been introduced in the literature i.e. strong NMCs, super strong NMCs and continuous NMCs. Perhaps the most useful notion among these is that of continuous non-malleable codes, that allows for continuous tampering by the adversary.
In this paper we give the first efficient, information-theoretic secure construction of continuous non-malleable codes in the split-state model. Enroute to our main result, we obtain constructions for almost all possible notions of non-malleable codes that have been considered in the split-state model, and for which such a construction is possible. Our result is obtained by a series of black-box reductions starting from the non-malleable codes from [ADL14].
One of the main technical ingredient of our result is a new concept that we call inception coding. We believe it may be of independent interest. Also our construction is used as a building block for non-persistent (resettable) continuous non-malleable codes in constant split-state model in [DNO16].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In particular, \(\mathcal{F}\) should not include “re-encoding functions” \(f(c) = {\mathsf {Enc}}(f'({\mathsf {Dec}}(c)))\) for any non-trivial function \(f'\), as \(m'={\mathsf {Dec}}(f({\mathsf {Enc}}(m)))=f'(m)\) is obviously related to m.
 
2
The elements of the image of RS are called valid codewords for RS.
 
3
Correctness of this definition follows from Lemma 2.
 
4
We will use this definition with C being a check function.
 
5
We will use this definition with C being a check function.
 
Literatur
[AAnHKM+16]
Zurück zum Zitat Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split state non-malleable codes. To appear in TCC 16-A (2016) Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split state non-malleable codes. To appear in TCC 16-A (2016)
[ADKO15a]
Zurück zum Zitat Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. In: The 47th ACM Symposium on Theory of Computing (STOC) (2015) Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. In: The 47th ACM Symposium on Theory of Computing (STOC) (2015)
[ADL14]
Zurück zum Zitat Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC. ACM (2014) Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC. ACM (2014)
[AGM+15a]
Zurück zum Zitat Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes resistant to permutations. In: Advances in Cryptology - CRYPTO (2015) Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes resistant to permutations. In: Advances in Cryptology - CRYPTO (2015)
[AGM+15b]
Zurück zum Zitat Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_16 Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 375–397. Springer, Heidelberg (2015). https://​doi.​org/​10.​1007/​978-3-662-46494-6_​16
[CDTV16]
Zurück zum Zitat Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: simpler, shorter, stronger. In: Proceedings of 13th International Conference on Theory of Cryptography - TCC 2016-A, Tel Aviv, Israel, 10-13 January 2016, Part I, pp. 306–335 (2016) Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: simpler, shorter, stronger. In: Proceedings of 13th International Conference on Theory of Cryptography - TCC 2016-A, Tel Aviv, Israel, 10-13 January 2016, Part I, pp. 306–335 (2016)
[CG14a]
Zurück zum Zitat Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS (2014) Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS (2014)
[CG14b]
Zurück zum Zitat Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: TCC (2014) Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: TCC (2014)
[CGL15]
Zurück zum Zitat Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with their many tampered extensions. CoRR, abs/1505.00107 (2015) Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with their many tampered extensions. CoRR, abs/1505.00107 (2015)
[CGM+15]
Zurück zum Zitat Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. IACR Cryptology ePrint Archive, 2015:129 (2015) Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. IACR Cryptology ePrint Archive, 2015:129 (2015)
[CMTV15]
Zurück zum Zitat Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. In: Proceedings of 12th Theory of Cryptography Conference on Theory of Cryptography - TCC 2015, Warsaw, Poland, 23-25 March 2015, Part I, pp. 532–560 (2015) Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. In: Proceedings of 12th Theory of Cryptography Conference on Theory of Cryptography - TCC 2015, Warsaw, Poland, 23-25 March 2015, Part I, pp. 532–560 (2015)
[CZ14]
Zurück zum Zitat Chattopadhyay, E., Zuckerman, D.: Non-malleable codes in the constant split-state model. In: FOCS (2014) Chattopadhyay, E., Zuckerman, D.: Non-malleable codes in the constant split-state model. In: FOCS (2014)
[DNO16]
Zurück zum Zitat Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continuously non-malleable codes in the constant split-state model. In: Presented at IMS Workshop on Information Theoretic Cryptography in NUS, Singapore (2016, unpublished Manuscript) Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continuously non-malleable codes in the constant split-state model. In: Presented at IMS Workshop on Information Theoretic Cryptography in NUS, Singapore (2016, unpublished Manuscript)
[DORS08]
Zurück zum Zitat Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)CrossRefMATHMathSciNet Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)CrossRefMATHMathSciNet
[DPW10]
Zurück zum Zitat Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452. Tsinghua University Press (2010) Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452. Tsinghua University Press (2010)
[DW09]
Zurück zum Zitat Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, MD, USA, pp. 601–610. ACM (2009) Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, MD, USA, pp. 601–610. ACM (2009)
[GLM+03]
[Li16]
Zurück zum Zitat Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors (2016) Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors (2016)
[RU08]
Zurück zum Zitat Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, New York (2008)CrossRefMATH Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, New York (2008)CrossRefMATH
Metadaten
Titel
Inception Makes Non-malleable Codes Stronger
verfasst von
Divesh Aggarwal
Tomasz Kazana
Maciej Obremski
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-70503-3_10