Skip to main content

2019 | OriginalPaper | Buchkapitel

23. Induced Cell Turnover and the Future of Regenerative Medicine

verfasst von : Jakub Stefaniak, Francesco Albert Bosco Cortese, Giovanni Santostasi

Erschienen in: The Transhumanism Handbook

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Induced Cell Turnover is a recently-described novel therapeutic modality within regenerative medicine consisting of the quantitative and qualitative coordination of targeted endogenous cell ablation with exogenous, patient-specific human pluripotent stem cell-derived exogenous cell administration performed in a gradual, multi-phasic manner so as to extrinsically mediate turnover and replacement of whole tissues and organs at the cellular level, with several features that distinguish it as a novel approach in regenerative medicine distinct from normative cell therapies and tissue/organ engineering. In this chapter we give an overview of the history and current state of regenerative medicine today and analyze the features that distinguish it as a novel paradigm of disease treatment that is methodologically and ontologically distinct from historical medical paradigms. Subsequently, we give an overview of ICT and the specific features that distinguish it as a novel therapeutic modality within regenerative medicine, distinct from normative cell therapies and tissue/organ engineering, and analyze its potential therapeutic efficacy in the context of the current advantages and limitations of normative cell therapies and tissue/organ engineering. Lastly, we explore the bright future of regenerative medicine as a field and an industry, and highlight the potential impact that ICT could come to have upon the field in the years to come.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Chen, F.-M., Zhao, Y.-M., Jin, Y. & Shi, S. Prospects for translational regenerative medicine. Biotechnol. Adv. 30, 658–672 (2012). Chen, F.-M., Zhao, Y.-M., Jin, Y. & Shi, S. Prospects for translational regenerative medicine. Biotechnol. Adv. 30, 658–672 (2012).
3.
Zurück zum Zitat Mahla, R. S. & Singh, R. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int. J. Cell Biol. 2016, 1–24 (2016). Mahla, R. S. & Singh, R. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int. J. Cell Biol. 2016, 1–24 (2016).
5.
Zurück zum Zitat Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L. & Bashir, R. 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annu. Rev. Biomed. Eng. 16, 247–276 (2014). Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L. & Bashir, R. 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annu. Rev. Biomed. Eng. 16, 247–276 (2014).
6.
Zurück zum Zitat Godwin, J. W. & Rosenthal, N. Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation 87, 66–75 (2014). Godwin, J. W. & Rosenthal, N. Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation 87, 66–75 (2014).
7.
Zurück zum Zitat Price, J. & Allen, S. Exploring the mechanisms regulating regeneration of deer antlers. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 809–22 (2004). Price, J. & Allen, S. Exploring the mechanisms regulating regeneration of deer antlers. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 809–22 (2004).
8.
Zurück zum Zitat Muneoka, K., Allan, C. H., Yang, X., Lee, J. & Han, M. Mammalian regeneration and regenerative medicine. Birth Defects Res. Part C Embryo Today Rev. 84, 265–280 (2008). Muneoka, K., Allan, C. H., Yang, X., Lee, J. & Han, M. Mammalian regeneration and regenerative medicine. Birth Defects Res. Part C Embryo Today Rev. 84, 265–280 (2008).
9.
Zurück zum Zitat Whited, J. L. & Tabin, C. J. Regeneration review reprise. J. Biol. 9, 15 (2010). Whited, J. L. & Tabin, C. J. Regeneration review reprise. J. Biol. 9, 15 (2010).
10.
Zurück zum Zitat Sampogna, G., Guraya, S. Y. & Forgione, A. Regenerative medicine: Historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct. 3, 101–107 (2015). Sampogna, G., Guraya, S. Y. & Forgione, A. Regenerative medicine: Historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct. 3, 101–107 (2015).
11.
Zurück zum Zitat Lagasse, E., Shizuru, J. A., Uchida, N., Tsukamoto, A. & Weissman, I. L. Toward regenerative medicine. Immunity 14, 425–36 (2001). Lagasse, E., Shizuru, J. A., Uchida, N., Tsukamoto, A. & Weissman, I. L. Toward regenerative medicine. Immunity 14, 425–36 (2001).
12.
Zurück zum Zitat Swijnenburg, R.-J. et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Swijnenburg, R.-J. et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts.
13.
Zurück zum Zitat Wright, S. Human Embryonic Stem-Cell Research: Science and Ethics. Am. Sci. 87, 352 (1999). Wright, S. Human Embryonic Stem-Cell Research: Science and Ethics. Am. Sci. 87, 352 (1999).
14.
Zurück zum Zitat Takahashi, K. & Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676 (2006). Takahashi, K. & Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676 (2006).
15.
Zurück zum Zitat Lo, B. & Parham, L. Ethical issues in stem cell research. Endocr. Rev. 30, 204–13 (2009). Lo, B. & Parham, L. Ethical issues in stem cell research. Endocr. Rev. 30, 204–13 (2009).
16.
Zurück zum Zitat Ben-David, U. & Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer 11, 268–277 (2011). Ben-David, U. & Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer 11, 268–277 (2011).
17.
Zurück zum Zitat Baghaban Eslaminejad, M. & Jahangir, S. Amniotic fluid stem cells and their application in cell-based tissue regeneration. Int. J. Fertil. Steril. 6, 147–56 (2012). Baghaban Eslaminejad, M. & Jahangir, S. Amniotic fluid stem cells and their application in cell-based tissue regeneration. Int. J. Fertil. Steril. 6, 147–56 (2012).
18.
Zurück zum Zitat Friedmann, T. & Roblin, R. Gene Therapy for Human Genetic Disease? Science (80–.). 175, (1972). Friedmann, T. & Roblin, R. Gene Therapy for Human Genetic Disease? Science (80–.). 175, (1972).
19.
Zurück zum Zitat Miller, A. D. Human gene therapy comes of age. Nature 357, 455–460 (1992). Miller, A. D. Human gene therapy comes of age. Nature 357, 455–460 (1992).
20.
Zurück zum Zitat Krueger, G. G. Fibroblasts and Dermal Gene Therapy: A Minireview. Hum. Gene Ther. 11, 2289–2296 (2000). Krueger, G. G. Fibroblasts and Dermal Gene Therapy: A Minireview. Hum. Gene Ther. 11, 2289–2296 (2000).
21.
Zurück zum Zitat Bleiziffer, O., Eriksson, E., Yao, F., Horch, R. E. & Kneser, U. Gene transfer strategies in tissue engineering. J. Cell. Mol. Med. 11, 206–223 (2007). Bleiziffer, O., Eriksson, E., Yao, F., Horch, R. E. & Kneser, U. Gene transfer strategies in tissue engineering. J. Cell. Mol. Med. 11, 206–223 (2007).
22.
Zurück zum Zitat Andree, C. et al. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc. Natl. Acad. Sci. U. S. A. 91, 12188–92 (1994). Andree, C. et al. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc. Natl. Acad. Sci. U. S. A. 91, 12188–92 (1994).
23.
Zurück zum Zitat Eming, S. A. et al. Particle-Mediated Gene Transfer of PDGF Isoforms Promotes Wound Repair. J. Invest. Dermatol. 112, 297–302 (1999). Eming, S. A. et al. Particle-Mediated Gene Transfer of PDGF Isoforms Promotes Wound Repair. J. Invest. Dermatol. 112, 297–302 (1999).
24.
Zurück zum Zitat Mulder, G. et al. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): Results of a Phase 1/2 trial. Wound Repair Regen. 17, 772–779 (2009). Mulder, G. et al. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): Results of a Phase 1/2 trial. Wound Repair Regen. 17, 772–779 (2009).
25.
Zurück zum Zitat Bush, J. et al. Therapies with Emerging Evidence of Efficacy: Avotermin for the Improvement of Scarring. Dermatol. Res. Pract. 2010, 1–6 (2010). Bush, J. et al. Therapies with Emerging Evidence of Efficacy: Avotermin for the Improvement of Scarring. Dermatol. Res. Pract. 2010, 1–6 (2010).
26.
Zurück zum Zitat Nixon, A. J. et al. Gene-mediated restoration of cartilage matrix by combination insulin-like growth factor-I/interleukin-1 receptor antagonist therapy. Gene Ther. 12, 177–186 (2005). Nixon, A. J. et al. Gene-mediated restoration of cartilage matrix by combination insulin-like growth factor-I/interleukin-1 receptor antagonist therapy. Gene Ther. 12, 177–186 (2005).
27.
Zurück zum Zitat Edwards, P. C. et al. Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther. 12, 75–86 (2005). Edwards, P. C. et al. Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther. 12, 75–86 (2005).
28.
Zurück zum Zitat Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in Genome Editing and Beyond. Annu. Rev. Biochem. 85, 227–264 (2016). Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in Genome Editing and Beyond. Annu. Rev. Biochem. 85, 227–264 (2016).
29.
Zurück zum Zitat Grobarczyk, B., Franco, B., Hanon, K. & Malgrange, B. Generation of Isogenic Human iPS Cell Line Precisely Corrected by Genome Editing Using the CRISPR/Cas9 System. Stem Cell Rev. Reports 11, 774–787 (2015). Grobarczyk, B., Franco, B., Hanon, K. & Malgrange, B. Generation of Isogenic Human iPS Cell Line Precisely Corrected by Genome Editing Using the CRISPR/Cas9 System. Stem Cell Rev. Reports 11, 774–787 (2015).
30.
Zurück zum Zitat KHATIWALA, C., LAW, R., SHEPHERD, B., DORFMAN, S. & CSETE, M. 3D CELL BIOPRINTING FOR REGENERATIVE MEDICINE RESEARCH AND THERAPIES. Gene Ther. Regul. 7, 1230004 (2012). KHATIWALA, C., LAW, R., SHEPHERD, B., DORFMAN, S. & CSETE, M. 3D CELL BIOPRINTING FOR REGENERATIVE MEDICINE RESEARCH AND THERAPIES. Gene Ther. Regul. 7, 1230004 (2012).
31.
Zurück zum Zitat Murphy, S. V & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014). Murphy, S. V & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).
32.
Zurück zum Zitat Rhee, S., Puetzer, J. L., Mason, B. N., Reinhart-King, C. A. & Bonassar, L. J. 3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering. ACS Biomater. Sci. Eng. 2, 1800–1805 (2016). Rhee, S., Puetzer, J. L., Mason, B. N., Reinhart-King, C. A. & Bonassar, L. J. 3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering. ACS Biomater. Sci. Eng. 2, 1800–1805 (2016).
33.
Zurück zum Zitat Roseti, L. et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C 78, 1246–1262 (2017). Roseti, L. et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C 78, 1246–1262 (2017).
34.
Zurück zum Zitat Embree, M. C. et al. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat. Commun. 7, 13073 (2016). Embree, M. C. et al. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat. Commun. 7, 13073 (2016).
35.
Zurück zum Zitat Chen, K. G., Mallon, B. S., McKay, R. D. G. & Robey, P. G. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14, 13–26 (2014). Chen, K. G., Mallon, B. S., McKay, R. D. G. & Robey, P. G. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14, 13–26 (2014).
36.
Zurück zum Zitat Olmer, R. et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng. Part C. Methods 18, 772–84 (2012). Olmer, R. et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng. Part C. Methods 18, 772–84 (2012).
37.
Zurück zum Zitat Ikeda, K., Nagata, S., Okitsu, T. & Takeuchi, S. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells. Sci. Rep. 7, 2850 (2017). Ikeda, K., Nagata, S., Okitsu, T. & Takeuchi, S. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells. Sci. Rep. 7, 2850 (2017).
38.
Zurück zum Zitat Ekser, B., Rigotti, P., Gridelli, B. & Cooper, D. K. C. Xenotransplantation of solid organs in the pig-to-primate model. Transpl. Immunol. 21, 87–92 (2009). Ekser, B., Rigotti, P., Gridelli, B. & Cooper, D. K. C. Xenotransplantation of solid organs in the pig-to-primate model. Transpl. Immunol. 21, 87–92 (2009).
39.
Zurück zum Zitat Yamaguchi, T. et al. Interspecies organogenesis generates autologous functional islets. Nature 542, 191–196 (2017). Yamaguchi, T. et al. Interspecies organogenesis generates autologous functional islets. Nature 542, 191–196 (2017).
41.
Zurück zum Zitat Kristensen, M. Major foot trauma: the dilemma of reconstruction versus amputation. Clin. Podiatr. Med. Surg. 14, 603–12 (1997). Kristensen, M. Major foot trauma: the dilemma of reconstruction versus amputation. Clin. Podiatr. Med. Surg. 14, 603–12 (1997).
42.
Zurück zum Zitat Harris, A. M., Althausen, P. L., Kellam, J., Bosse, M. J. & Castillo, R. Complications Following Limb-Threatening Lower Extremity Trauma. J. Orthop. Trauma 23, 1–6 (2009). Harris, A. M., Althausen, P. L., Kellam, J., Bosse, M. J. & Castillo, R. Complications Following Limb-Threatening Lower Extremity Trauma. J. Orthop. Trauma 23, 1–6 (2009).
43.
Zurück zum Zitat Penn-Barwell, J. G. Outcomes in lower limb amputation following trauma: A systematic review and meta-analysis. Injury 42, 1474–1479 (2011). Penn-Barwell, J. G. Outcomes in lower limb amputation following trauma: A systematic review and meta-analysis. Injury 42, 1474–1479 (2011).
44.
Zurück zum Zitat Marshall, C. & Stansby, G. Amputation and rehabilitation. Surg. 31, 236–239 (2013). Marshall, C. & Stansby, G. Amputation and rehabilitation. Surg. 31, 236–239 (2013).
45.
Zurück zum Zitat Section 2: Limb Salvage and Amputation After Major Lower Limb Trauma. J. Orthop. Trauma 31, S39 (2017). Section 2: Limb Salvage and Amputation After Major Lower Limb Trauma. J. Orthop. Trauma 31, S39 (2017).
46.
Zurück zum Zitat Simkin, J., Han, M., Yu, L., Yan, M. & Muneoka, K. The Mouse Digit Tip: From Wound Healing to Regeneration. in Methods in molecular biology (Clifton, N.J.) 1037, 419–435 (2013). Simkin, J., Han, M., Yu, L., Yan, M. & Muneoka, K. The Mouse Digit Tip: From Wound Healing to Regeneration. in Methods in molecular biology (Clifton, N.J.) 1037, 419–435 (2013).
47.
Zurück zum Zitat Han, M., Yang, X., Lee, J., Allan, C. H. & Muneoka, K. Development and regeneration of the neonatal digit tip in mice. Dev. Biol. 315, 125–135 (2008). Han, M., Yang, X., Lee, J., Allan, C. H. & Muneoka, K. Development and regeneration of the neonatal digit tip in mice. Dev. Biol. 315, 125–135 (2008).
48.
Zurück zum Zitat Yu, L. et al. BMP signaling induces digit regeneration in neonatal mice. Development 137, 551–9 (2010). Yu, L. et al. BMP signaling induces digit regeneration in neonatal mice. Development 137, 551–9 (2010).
49.
Zurück zum Zitat Yu, L., Han, M., Yan, M., Lee, J. & Muneoka, K. BMP2 induces segment-specific skeletal regeneration from digit and limb amputations by establishing a new endochondral ossification center. Dev. Biol. 372, 263–273 (2012). Yu, L., Han, M., Yan, M., Lee, J. & Muneoka, K. BMP2 induces segment-specific skeletal regeneration from digit and limb amputations by establishing a new endochondral ossification center. Dev. Biol. 372, 263–273 (2012).
50.
Zurück zum Zitat Masaki, H. & Ide, H. Regeneration potency of mouse limbs. Dev. Growth Differ. 49, 89–98 (2007). Masaki, H. & Ide, H. Regeneration potency of mouse limbs. Dev. Growth Differ. 49, 89–98 (2007).
51.
Zurück zum Zitat Leppik, L. P. et al. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci. Rep. 5, 18353 (2016). Leppik, L. P. et al. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci. Rep. 5, 18353 (2016).
52.
Zurück zum Zitat Haubner, B. J. et al. Functional Recovery of a Human Neonatal Heart After Severe Myocardial Infarction. Circ. Res. (2015). Haubner, B. J. et al. Functional Recovery of a Human Neonatal Heart After Severe Myocardial Infarction. Circ. Res. (2015).
53.
Zurück zum Zitat Cortese, F. A. B. & Santostasi, G. Whole-Body Induced Cell Turnover: A Proposed Intervention for Age-Related Damage and Associated Pathology. Rejuvenation Res. 19, 322–336 (2016). Cortese, F. A. B. & Santostasi, G. Whole-Body Induced Cell Turnover: A Proposed Intervention for Age-Related Damage and Associated Pathology. Rejuvenation Res. 19, 322–336 (2016).
54.
Zurück zum Zitat Shay, J. W. & Wright, W. E. Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol. 1, 72–76 (2000). Shay, J. W. & Wright, W. E. Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol. 1, 72–76 (2000).
55.
Zurück zum Zitat Shawi, M. & Autexier, C. Telomerase, senescence and ageing. Mech. Ageing Dev. 129, 3–10 (2008). Shawi, M. & Autexier, C. Telomerase, senescence and ageing. Mech. Ageing Dev. 129, 3–10 (2008).
56.
Zurück zum Zitat Hoeijmakers, J. H. J. DNA Damage, Aging, and Cancer. N. Engl. J. Med. 361, 1475–1485 (2009). Hoeijmakers, J. H. J. DNA Damage, Aging, and Cancer. N. Engl. J. Med. 361, 1475–1485 (2009).
57.
Zurück zum Zitat Best, B. P. Nuclear DNA Damage as a Direct Cause of Aging. Rejuvenation Res. 12, 199–208 (2009). Best, B. P. Nuclear DNA Damage as a Direct Cause of Aging. Rejuvenation Res. 12, 199–208 (2009).
58.
Zurück zum Zitat Park, C. B. & Larsson, N.-G. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193, 809–18 (2011). Park, C. B. & Larsson, N.-G. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193, 809–18 (2011).
59.
Zurück zum Zitat Shigenaga, M. K., Hagen, T. M. & Ames, B. N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. 91, 10771–10778 (1994). Shigenaga, M. K., Hagen, T. M. & Ames, B. N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. 91, 10771–10778 (1994).
60.
Zurück zum Zitat Stadtman, E. Protein oxidation and aging. Science (80–.). 257, (1992). Stadtman, E. Protein oxidation and aging. Science (80–.). 257, (1992).
61.
Zurück zum Zitat Squier, T. C. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 36, 1539–50 (2001). Squier, T. C. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 36, 1539–50 (2001).
62.
Zurück zum Zitat Wagner, K.-H., Cameron-Smith, D., Wessner, B. & Franzke, B. Biomarkers of Aging: From Function to Molecular Biology. Nutrients 8, 338 (2016). Wagner, K.-H., Cameron-Smith, D., Wessner, B. & Franzke, B. Biomarkers of Aging: From Function to Molecular Biology. Nutrients 8, 338 (2016).
63.
Zurück zum Zitat Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. 112, E4104–E4110 (2015). Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. 112, E4104–E4110 (2015).
64.
Zurück zum Zitat Takahashi, K. et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131, 861–872 (2007). Takahashi, K. et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131, 861–872 (2007).
65.
Zurück zum Zitat Wang, F. et al. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res. 22, 757–768 (2012). Wang, F. et al. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res. 22, 757–768 (2012).
66.
Zurück zum Zitat Luo, L. Z. et al. DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells. PLoS One 7, e30541 (2012). Luo, L. Z. et al. DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells. PLoS One 7, e30541 (2012).
67.
Zurück zum Zitat Lin, B., Gupta, D. & Heinen, C. D. Human Pluripotent Stem Cells Have a Novel Mismatch Repair-dependent Damage Response. J. Biol. Chem. 289, 24314–24324 (2014). Lin, B., Gupta, D. & Heinen, C. D. Human Pluripotent Stem Cells Have a Novel Mismatch Repair-dependent Damage Response. J. Biol. Chem. 289, 24314–24324 (2014).
68.
Zurück zum Zitat Suhr, S. T. et al. Mitochondrial Rejuvenation After Induced Pluripotency. PLoS One 5, e14095 (2010). Suhr, S. T. et al. Mitochondrial Rejuvenation After Induced Pluripotency. PLoS One 5, e14095 (2010).
69.
Zurück zum Zitat Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The Senescence-Related Mitochondrial/Oxidative Stress Pathway is Repressed in Human Induced Pluripotent Stem Cells. Stem Cells 28, 721–733 (2010). Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The Senescence-Related Mitochondrial/Oxidative Stress Pathway is Repressed in Human Induced Pluripotent Stem Cells. Stem Cells 28, 721–733 (2010).
70.
Zurück zum Zitat Potter, N. E. et al. Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res. 23, 2115–2125 (2013). Potter, N. E. et al. Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res. 23, 2115–2125 (2013).
71.
Zurück zum Zitat Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016). Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016).
72.
Zurück zum Zitat Pellettieri, J. & Alvarado, A. S. Cell Turnover and Adult Tissue Homeostasis: From Humans to Planarians. Annu. Rev. Genet. 41, 83–105 (2007). Pellettieri, J. & Alvarado, A. S. Cell Turnover and Adult Tissue Homeostasis: From Humans to Planarians. Annu. Rev. Genet. 41, 83–105 (2007).
73.
Zurück zum Zitat Neves, J., Demaria, M., Campisi, J. & Jasper, H. Of Flies, Mice, and Men: Evolutionarily Conserved Tissue Damage Responses and Aging. Dev. Cell 32, 9–18 (2015). Neves, J., Demaria, M., Campisi, J. & Jasper, H. Of Flies, Mice, and Men: Evolutionarily Conserved Tissue Damage Responses and Aging. Dev. Cell 32, 9–18 (2015).
74.
Zurück zum Zitat Loi, P., Iuso, D., Czernik, M. & Ogura, A. A New, Dynamic Era for Somatic Cell Nuclear Transfer? Trends Biotechnol. 34, 791–797 (2016). Loi, P., Iuso, D., Czernik, M. & Ogura, A. A New, Dynamic Era for Somatic Cell Nuclear Transfer? Trends Biotechnol. 34, 791–797 (2016).
75.
Zurück zum Zitat Qi, S. D., Smith, P. D. & Choong, P. F. Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ J. Surg. 84, 417–423 (2014). Qi, S. D., Smith, P. D. & Choong, P. F. Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ J. Surg. 84, 417–423 (2014).
76.
Zurück zum Zitat Cherry, A. B. C. & Daley, G. Q. Reprogramming Cellular Identity for Regenerative Medicine. Cell 148, 1110–1122 (2012). Cherry, A. B. C. & Daley, G. Q. Reprogramming Cellular Identity for Regenerative Medicine. Cell 148, 1110–1122 (2012).
77.
Zurück zum Zitat Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013). Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013).
78.
Zurück zum Zitat Gelinsky, M., Bernhardt, A. & Milan, F. Bioreactors in tissue engineering: Advances in stem cell culture and three-dimensional tissue constructs. Eng. Life Sci. 15, 670–677 (2015). Gelinsky, M., Bernhardt, A. & Milan, F. Bioreactors in tissue engineering: Advances in stem cell culture and three-dimensional tissue constructs. Eng. Life Sci. 15, 670–677 (2015).
79.
Zurück zum Zitat Weissbein, U., Benvenisty, N. & Ben-David, U. Genome maintenance in pluripotent stem cells. J. Cell Biol. 204, (2014). Weissbein, U., Benvenisty, N. & Ben-David, U. Genome maintenance in pluripotent stem cells. J. Cell Biol. 204, (2014).
80.
Zurück zum Zitat Ghosh, Z. et al. Dissecting the Oncogenic and Tumorigenic Potential of Differentiated Human Induced Pluripotent Stem Cells and Human Embryonic Stem Cells. Cancer Res. 71, 5030–5039 (2011). Ghosh, Z. et al. Dissecting the Oncogenic and Tumorigenic Potential of Differentiated Human Induced Pluripotent Stem Cells and Human Embryonic Stem Cells. Cancer Res. 71, 5030–5039 (2011).
81.
Zurück zum Zitat Grégoire, D. & Kmita, M. Genetic Cell Ablation. in Methods in molecular biology (Clifton, N.J.) 1092, 421–436 (2014). Grégoire, D. & Kmita, M. Genetic Cell Ablation. in Methods in molecular biology (Clifton, N.J.) 1092, 421–436 (2014).
82.
Zurück zum Zitat MacCorkle, R. A., Freeman, K. W. & Spencer, D. M. Synthetic activation of caspases: artificial death switches. Proc. Natl. Acad. Sci. U. S. A. 95, 3655–60 (1998). MacCorkle, R. A., Freeman, K. W. & Spencer, D. M. Synthetic activation of caspases: artificial death switches. Proc. Natl. Acad. Sci. U. S. A. 95, 3655–60 (1998).
83.
Zurück zum Zitat Dougherty, T. J. et al. Photodynamic therapy. J. Natl. Cancer Inst. 90, 889–905 (1998). Dougherty, T. J. et al. Photodynamic therapy. J. Natl. Cancer Inst. 90, 889–905 (1998).
84.
Zurück zum Zitat Chennat, J., Mino-Kenudson, M., Sahani, D. V. & et al., Current status of endoscopic ultrasound guided ablation techniques. Gastroenterology 140, 1403–9 (2011). Chennat, J., Mino-Kenudson, M., Sahani, D. V. & et al., Current status of endoscopic ultrasound guided ablation techniques. Gastroenterology 140, 1403–9 (2011).
85.
Zurück zum Zitat Tiwari, G. et al. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2, 2–11 (2012). Tiwari, G. et al. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2, 2–11 (2012).
86.
Zurück zum Zitat Edinger, A. L. & Thompson, C. B. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669 (2004). Edinger, A. L. & Thompson, C. B. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669 (2004).
87.
Zurück zum Zitat Karjoo, Z., Chen, X. & Hatefi, A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv. Drug Deliv. Rev. 99, 113–128 (2016). Karjoo, Z., Chen, X. & Hatefi, A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv. Drug Deliv. Rev. 99, 113–128 (2016).
88.
Zurück zum Zitat Trounson, A. & DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol. 17, 194–200 (2016). Trounson, A. & DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol. 17, 194–200 (2016).
89.
Zurück zum Zitat Niccoli, T. & Partridge, L. Ageing as a Risk Factor for Disease. Curr. Biol. 22, R741–R752 (2012). Niccoli, T. & Partridge, L. Ageing as a Risk Factor for Disease. Curr. Biol. 22, R741–R752 (2012).
Metadaten
Titel
Induced Cell Turnover and the Future of Regenerative Medicine
verfasst von
Jakub Stefaniak
Francesco Albert Bosco Cortese
Giovanni Santostasi
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-16920-6_23