Skip to main content
Erschienen in: Journal of Materials Science 11/2017

22.02.2017 | Original Paper

Influence of Al2O3 buffer layer on catalyst morphology and spinnability of carbon nanotube arrays

verfasst von: Yani Zhang, Gengzhi Sun, Zhaoyao Zhan, Lianxi Zheng

Erschienen in: Journal of Materials Science | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotube (CNT) fibers spun from vertically aligned CNT arrays hold great promise in promoting CNT’s practical applications. Their production and properties strongly depend on the spinnability of the arrays. Herein, we study the influence of Al2O3 buffer layer on catalyst morphology and the spinnability of CNT arrays. Long and vertically aligned CNT arrays have been obtained from a wide range of Al2O3 buffer layer thickness, but the spinnable ones have only derived from a narrow range of the thickness. It is further found that the Al2O3 buffer layer can regulate the size and size distribution of the catalyst particles through balancing surface diffusion and inter-layer diffusion. Small, dense, and uniform-distributed nanoparticles are fingerprinted as the optimal catalyst for growing long and spinnable CNT arrays and can be obtained at a proper thickness of buffer layer. By using a tailored tri-layered Fe/Al2O3/SiO2 catalyst, the obtained CNT arrays could reach a height of 500–800 µm and are highly spinnable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 29:7787–7792 Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 29:7787–7792
2.
Zurück zum Zitat Zhang YN, Zheng LX (2010) Towards chirality-pure carbon nanotubes. Nanoscale 2:1919–1929CrossRef Zhang YN, Zheng LX (2010) Towards chirality-pure carbon nanotubes. Nanoscale 2:1919–1929CrossRef
3.
Zurück zum Zitat Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555CrossRef Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555CrossRef
4.
Zurück zum Zitat Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus Phys 4:993–1008CrossRef Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus Phys 4:993–1008CrossRef
5.
Zurück zum Zitat Dumitrica T, Hua M, Yakobson BI (2006) Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc Natl Acad Sci USA 103:6105–6109CrossRef Dumitrica T, Hua M, Yakobson BI (2006) Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc Natl Acad Sci USA 103:6105–6109CrossRef
6.
Zurück zum Zitat Appenzeller J, Martel R, Derycke V, Radosavjevic M, Wind S, Neumayer D, Avouris P (2002) Carbon nanotubes as potential building blocks for future nanoelectronics. Microelectron Eng 64:391–397CrossRef Appenzeller J, Martel R, Derycke V, Radosavjevic M, Wind S, Neumayer D, Avouris P (2002) Carbon nanotubes as potential building blocks for future nanoelectronics. Microelectron Eng 64:391–397CrossRef
7.
Zurück zum Zitat Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef
8.
Zurück zum Zitat Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3:597–602CrossRef Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3:597–602CrossRef
9.
Zurück zum Zitat Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82:2491–2493CrossRef Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82:2491–2493CrossRef
10.
Zurück zum Zitat Sun GZ, Huang YX, Zheng LX, Zhan ZY, Zhang YN, Pang JHL, Wu T, Chen P (2011) Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips. Nanoscale 3:4854–4858CrossRef Sun GZ, Huang YX, Zheng LX, Zhan ZY, Zhang YN, Pang JHL, Wu T, Chen P (2011) Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips. Nanoscale 3:4854–4858CrossRef
11.
Zurück zum Zitat Jiang KL, Li QQ, Fan SS (2002) Nanotechnology: spinning continuous carbon nanotube yarns—carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 419:801CrossRef Jiang KL, Li QQ, Fan SS (2002) Nanotechnology: spinning continuous carbon nanotube yarns—carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 419:801CrossRef
12.
Zurück zum Zitat Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC et al (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3:673–676CrossRef Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC et al (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3:673–676CrossRef
13.
Zurück zum Zitat Zheng LX, Sun GZ, Zhan ZY (2010) Tuning array morphology for high-strength carbon-nanotube fibers. Small 6:132–137CrossRef Zheng LX, Sun GZ, Zhan ZY (2010) Tuning array morphology for high-strength carbon-nanotube fibers. Small 6:132–137CrossRef
14.
Zurück zum Zitat Pint CL, Pheasant ST, Pasquali M, Coulter KE, Schmidt HK, Hauge RH (2008) Synthesis of high aspect-ratio carbon nanotube “flying carpets” from nanostructured flake substrates. Nano Lett 8:1879–1883CrossRef Pint CL, Pheasant ST, Pasquali M, Coulter KE, Schmidt HK, Hauge RH (2008) Synthesis of high aspect-ratio carbon nanotube “flying carpets” from nanostructured flake substrates. Nano Lett 8:1879–1883CrossRef
15.
Zurück zum Zitat Zhang Q, Zhou WP, Qian WZ, Xiang R, Huang JQ, Wang DZ, Wei F (2007) Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process. J Phys Chem C 111:14638–14643CrossRef Zhang Q, Zhou WP, Qian WZ, Xiang R, Huang JQ, Wang DZ, Wei F (2007) Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process. J Phys Chem C 111:14638–14643CrossRef
16.
Zurück zum Zitat Motta M, Li YL, Kinloch I, Windle A (2005) Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett 5:1529–1533CrossRef Motta M, Li YL, Kinloch I, Windle A (2005) Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett 5:1529–1533CrossRef
17.
Zurück zum Zitat Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219CrossRef Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219CrossRef
18.
Zurück zum Zitat Zhang XF, Li QW, Tu Y, Li YA, Coulter JY, Zheng LX, Zhao YH, Jia QX, Peterson DE, Zhu YT (2007) Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3:244–248CrossRef Zhang XF, Li QW, Tu Y, Li YA, Coulter JY, Zheng LX, Zhao YH, Jia QX, Peterson DE, Zhu YT (2007) Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3:244–248CrossRef
19.
Zurück zum Zitat The strongest high modulus and the highest tensile strength Toray carbon fibers have the strengths of 4.71 and 6.37 GPa, respectively. Toray Carbon Fibers America, Inc., http://www.toraycfa.com The strongest high modulus and the highest tensile strength Toray carbon fibers have the strengths of 4.71 and 6.37 GPa, respectively. Toray Carbon Fibers America, Inc., http://​www.​toraycfa.​com
20.
Zurück zum Zitat Zhang YN, Zheng LX, Sun GZ, Zhan ZY, Liao K (2012) Failure mechanisms of carbon nanotube fibers under different strain rates. Carbon 50:2887–2893CrossRef Zhang YN, Zheng LX, Sun GZ, Zhan ZY, Liao K (2012) Failure mechanisms of carbon nanotube fibers under different strain rates. Carbon 50:2887–2893CrossRef
21.
Zurück zum Zitat Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306:1358–1361CrossRef Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306:1358–1361CrossRef
22.
Zurück zum Zitat Zhang XB, Jiang KL, Teng C, Liu P, Zhang L, Kong J, Zhang TH, Li QQ, Fan SS (2006) Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18:1505–1510CrossRef Zhang XB, Jiang KL, Teng C, Liu P, Zhang L, Kong J, Zhang TH, Li QQ, Fan SS (2006) Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18:1505–1510CrossRef
23.
Zurück zum Zitat Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT (2006) Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv Mater 18:3160–3163CrossRef Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT (2006) Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv Mater 18:3160–3163CrossRef
24.
Zurück zum Zitat Cui XW, Wei WF, Harrower C, Chen WX (2009) Effect of catalyst particle interspacing on the growth of millimeter-scale carbon nanotube arrays by catalytic chemical vapor deposition. Carbon 47:3441–3451CrossRef Cui XW, Wei WF, Harrower C, Chen WX (2009) Effect of catalyst particle interspacing on the growth of millimeter-scale carbon nanotube arrays by catalytic chemical vapor deposition. Carbon 47:3441–3451CrossRef
25.
Zurück zum Zitat Kim SM, Pint CL, Amama PB, Zakharov DN, Hauge RH, Maruyama B, Stach EA (2010) Evolution in catalyst morphology leads to carbon nanotube growth termination. J Phys Chem Lett 1:918–922CrossRef Kim SM, Pint CL, Amama PB, Zakharov DN, Hauge RH, Maruyama B, Stach EA (2010) Evolution in catalyst morphology leads to carbon nanotube growth termination. J Phys Chem Lett 1:918–922CrossRef
26.
Zurück zum Zitat Behr MJ, Mkhoyan KA, Aydil ES (2010) Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growth. ACS Nano 4:5087–5094CrossRef Behr MJ, Mkhoyan KA, Aydil ES (2010) Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growth. ACS Nano 4:5087–5094CrossRef
27.
Zurück zum Zitat Pisana S, Cantoro M, Parvez A, Hofmann S, Ferrari AC, Robertson J (2007) The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth. Phys E-Low-Dimens Syst Nanostructures 3:71–75 Pisana S, Cantoro M, Parvez A, Hofmann S, Ferrari AC, Robertson J (2007) The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth. Phys E-Low-Dimens Syst Nanostructures 3:71–75
28.
Zurück zum Zitat Zhan ZY, Zhang YN, Sun GZ, Zheng LX, Liao K (2011) The effects of catalyst treatment on fast growth of millimeter-long multi-walled carbon nanotube arrays. Appl Surf Sci 257:7704–7708CrossRef Zhan ZY, Zhang YN, Sun GZ, Zheng LX, Liao K (2011) The effects of catalyst treatment on fast growth of millimeter-long multi-walled carbon nanotube arrays. Appl Surf Sci 257:7704–7708CrossRef
29.
Zurück zum Zitat Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN (2008) Influence of hydrogen pretreatment condition on the morphology of Fe/Al2O3 catalyst film and growth of millimeter-long carbon nanotube array. J Phys Chem C 112:4524–4530CrossRef Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN (2008) Influence of hydrogen pretreatment condition on the morphology of Fe/Al2O3 catalyst film and growth of millimeter-long carbon nanotube array. J Phys Chem C 112:4524–4530CrossRef
30.
Zurück zum Zitat Zhang YY, Zou GF, Doorn SK, Htoon H, Stan L, Hawley ME, Sheehan CJ, Zhu YT, Jia QX (2009) Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano 3:2157–2162CrossRef Zhang YY, Zou GF, Doorn SK, Htoon H, Stan L, Hawley ME, Sheehan CJ, Zhu YT, Jia QX (2009) Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano 3:2157–2162CrossRef
31.
Zurück zum Zitat Hofmann S, Cantoro M, Kleinsorge B, Casiraghi C, Parvez A, Robertson J, Ducati C (2005) Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. J Appl Phys 98:034308CrossRef Hofmann S, Cantoro M, Kleinsorge B, Casiraghi C, Parvez A, Robertson J, Ducati C (2005) Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. J Appl Phys 98:034308CrossRef
32.
Zurück zum Zitat De Arcos T, Vonau F, Garnier MG, Thommen V, Boyen HG, Oelhafen P, Duggelin M, Mathis D, Guggenheim R (2002) Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition. Appl Phys Lett 80:2383–2385CrossRef De Arcos T, Vonau F, Garnier MG, Thommen V, Boyen HG, Oelhafen P, Duggelin M, Mathis D, Guggenheim R (2002) Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition. Appl Phys Lett 80:2383–2385CrossRef
33.
Zurück zum Zitat Lee HC, Alegaonkar PS, Kim DY, Lee JH, Yoo JB (2007) Growth of carbon nanotubes: effect of Fe diffusion and oxidation. Philos Mag Lett 87:767–780CrossRef Lee HC, Alegaonkar PS, Kim DY, Lee JH, Yoo JB (2007) Growth of carbon nanotubes: effect of Fe diffusion and oxidation. Philos Mag Lett 87:767–780CrossRef
34.
Zurück zum Zitat Huynh CP, Hawkins SC, Gengenbach TR, Humphries W, Glenn M, Simon GP (2013) Evolution of directly-spinnable carbon nanotube catalyst structure by recycling analysis. Carbon 62:204–212CrossRef Huynh CP, Hawkins SC, Gengenbach TR, Humphries W, Glenn M, Simon GP (2013) Evolution of directly-spinnable carbon nanotube catalyst structure by recycling analysis. Carbon 62:204–212CrossRef
Metadaten
Titel
Influence of Al2O3 buffer layer on catalyst morphology and spinnability of carbon nanotube arrays
verfasst von
Yani Zhang
Gengzhi Sun
Zhaoyao Zhan
Lianxi Zheng
Publikationsdatum
22.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0828-9

Weitere Artikel der Ausgabe 11/2017

Journal of Materials Science 11/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.