Skip to main content
Erschienen in: Geotechnical and Geological Engineering 3/2020

29.01.2020 | Original Paper

Influence of Fibers on Hydro-Mechanical Properties of Bentonitic Mixtures

verfasst von: Suryaleen Rout, Suresh Prasad Singh

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports the influence of fibre inclusion on the hydro-mechanical properties of bentonitic mixtures at varying compaction states. Pond ash–bentonite and sand–bentonite mixtures are synthesized by adding 20% commercial bentonite to pond ash and sand respectively. Discrete polypropylene fibres ranging from 0 to 1% are added to the mixtures. The hydro-mechanical properties of specimens; compacted to either standard or modified Proctor density; are investigated for a wide range of molding water content varying from dry to wet side of optimum. Though the inclusion of fibre has insignificant effect on optimum moisture content and maximum dry density of mixtures, the compressive strength, failure strain, unit cohesion and frictional angle of the compacted specimens are found to increase whereas the volumetric shrinkage strains are found to decrease irrespective of the molding water content. Both unreinforced and reinforced specimens exhibited the maximum unconfined compressive strength at relative water contents of 90% and 80% when compacted to standard and modified Proctor density respectively. With an addition of 1% fibre, these values are found to increase by 2 to 3 times. The specimens compacted at dry of optimum did not show any significant variation in hydraulic conductivity whereas specimens compacted at wet of optimum exhibited an increased hydraulic conductivity with fibre content. However, specimens compacted at optimum moisture content showed an insignificant change in hydraulic conductivity with increase in fibre content. Furthermore, the increase in volumetric shrinkage strain with relative water content is reduced as the fibre content increases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdi MR, Parsapajouh A, Arjomand MA (2008) Effects of random fiber inclusion on consolidation, hydraulic conductivity, swelling, shrinkage limit and desiccation cracking of clays. Int J Civ Eng 6(4):284–292 Abdi MR, Parsapajouh A, Arjomand MA (2008) Effects of random fiber inclusion on consolidation, hydraulic conductivity, swelling, shrinkage limit and desiccation cracking of clays. Int J Civ Eng 6(4):284–292
Zurück zum Zitat Akhtar JN, Alam J, Ahmad S (2008) The influence of randomly oriented hair fiber and lime on the CBR value of Dadri flyash. Asian J Civ Eng 9(5):505–512 Akhtar JN, Alam J, Ahmad S (2008) The influence of randomly oriented hair fiber and lime on the CBR value of Dadri flyash. Asian J Civ Eng 9(5):505–512
Zurück zum Zitat Al Wahab RM, El-Kedrah MA (1995) Using fibers to reduce tension cracks and shrink/swell in a compacted clay. Geoenvironment 2000, Geotechnical special publication no. 46. ASCE, New York, pp 791–805 Al Wahab RM, El-Kedrah MA (1995) Using fibers to reduce tension cracks and shrink/swell in a compacted clay. Geoenvironment 2000, Geotechnical special publication no. 46. ASCE, New York, pp 791–805
Zurück zum Zitat Andersland OB, Khattack AS (1979) Shear strength of kaolinite/fiber soil mixture. In: Proceeding of 1st international conference on soil reinforcement, Paris, France, vol 1, pp 11–16 Andersland OB, Khattack AS (1979) Shear strength of kaolinite/fiber soil mixture. In: Proceeding of 1st international conference on soil reinforcement, Paris, France, vol 1, pp 11–16
Zurück zum Zitat Boominathan A, Hari S (2002) Liquefaction strength of flyash reinforced with randomly distributed fibers. Soil Dyn Earthquake Eng 22:1027–1033CrossRef Boominathan A, Hari S (2002) Liquefaction strength of flyash reinforced with randomly distributed fibers. Soil Dyn Earthquake Eng 22:1027–1033CrossRef
Zurück zum Zitat Cabalar AF, Akbulut N (2016) Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. SpringerPlus 5(1):820CrossRef Cabalar AF, Akbulut N (2016) Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. SpringerPlus 5(1):820CrossRef
Zurück zum Zitat Cai Y, Shi B, Ng CW, Tang CS (2006) Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Eng Geol 87(3–4):230–240CrossRef Cai Y, Shi B, Ng CW, Tang CS (2006) Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Eng Geol 87(3–4):230–240CrossRef
Zurück zum Zitat Chakraborty TK, Dasgupta SP (1996) Randomly reinforced fly ash foundation material. In: Indian geotechnical conference. Madras. India, vol 1 pp 231–235 Chakraborty TK, Dasgupta SP (1996) Randomly reinforced fly ash foundation material. In: Indian geotechnical conference. Madras. India, vol 1 pp 231–235
Zurück zum Zitat Das A, Jayashree C, Viswanadham BVS (2009) Effect of randomly distributed geofibers on the piping behavior of embankments constructed with flyash as a fill material. J Geotext Geomembr 27:341–349CrossRef Das A, Jayashree C, Viswanadham BVS (2009) Effect of randomly distributed geofibers on the piping behavior of embankments constructed with flyash as a fill material. J Geotext Geomembr 27:341–349CrossRef
Zurück zum Zitat Dasaka SM, Sumesh KS (2011) Effect of coir fiber on the stress–strain behavior of a reconstituted fine-grained soil. J Nat Fibers 8(3):189–204CrossRef Dasaka SM, Sumesh KS (2011) Effect of coir fiber on the stress–strain behavior of a reconstituted fine-grained soil. J Nat Fibers 8(3):189–204CrossRef
Zurück zum Zitat Diambra A, Ibraim E (2014) Modelling of fibre–cohesive soil mixtures. Acta Geotech 9(6):1029–1043CrossRef Diambra A, Ibraim E (2014) Modelling of fibre–cohesive soil mixtures. Acta Geotech 9(6):1029–1043CrossRef
Zurück zum Zitat Diambra A, Ibraim E (2015) Fibre-reinforced sand: interaction at the fibre and grain scale. Geotechnique 65(4):296–308CrossRef Diambra A, Ibraim E (2015) Fibre-reinforced sand: interaction at the fibre and grain scale. Geotechnique 65(4):296–308CrossRef
Zurück zum Zitat Gangadara S, Muddaraju HC (2013) Effect of reinforcement spacing on the performance of embedded circular footing in reinforced flyash. Int J Sci Eng Res 4(5):67–70 Gangadara S, Muddaraju HC (2013) Effect of reinforcement spacing on the performance of embedded circular footing in reinforced flyash. Int J Sci Eng Res 4(5):67–70
Zurück zum Zitat Ghosh A, Dey U (2009) Bearing ratio of reinforced flyash overlying soft soil and deformation modulus of flyash. J Geotext Geomembr 27:313–320CrossRef Ghosh A, Dey U (2009) Bearing ratio of reinforced flyash overlying soft soil and deformation modulus of flyash. J Geotext Geomembr 27:313–320CrossRef
Zurück zum Zitat Ghosh A, Ghosh A, Bera AK (2005) Bearing capacity of square footing on pond ash reinforced with jute-geotextile. J Geotext Geomembr 23(2):144–173CrossRef Ghosh A, Ghosh A, Bera AK (2005) Bearing capacity of square footing on pond ash reinforced with jute-geotextile. J Geotext Geomembr 23(2):144–173CrossRef
Zurück zum Zitat Gray DH, Al-Refeai T (1986) Behavior of fabric versus fiber-reinforced sand. J Geotech Eng 112(8):804–820CrossRef Gray DH, Al-Refeai T (1986) Behavior of fabric versus fiber-reinforced sand. J Geotech Eng 112(8):804–820CrossRef
Zurück zum Zitat Gray DH, Ohashi H (1983) Mechanics of fiber reinforcement in sand. J Geotech Eng 109(3):335–353CrossRef Gray DH, Ohashi H (1983) Mechanics of fiber reinforcement in sand. J Geotech Eng 109(3):335–353CrossRef
Zurück zum Zitat IS 2720 Part 7 (1980) Methods of test for soils: determination of water content-dry density relation using light compaction (second revision). Bureau of Indian Standards, New Delhi IS 2720 Part 7 (1980) Methods of test for soils: determination of water content-dry density relation using light compaction (second revision). Bureau of Indian Standards, New Delhi
Zurück zum Zitat IS 2720 Part 8 (1983) Methods of test for soils: determination of water content-dry density relation using heavy compaction (second revision). Bureau of Indian Standards, New Delhi IS 2720 Part 8 (1983) Methods of test for soils: determination of water content-dry density relation using heavy compaction (second revision). Bureau of Indian Standards, New Delhi
Zurück zum Zitat IS 2720 Part 4 (1985) Methods of test for soils: part 4-grain size analysis. Bureau of Indian Standards, New Delhi IS 2720 Part 4 (1985) Methods of test for soils: part 4-grain size analysis. Bureau of Indian Standards, New Delhi
Zurück zum Zitat IS 2720 Part 13 (1986) Methods of test for soils: direct shear test (second revision). Bureau of Indian Standards, New Delhi IS 2720 Part 13 (1986) Methods of test for soils: direct shear test (second revision). Bureau of Indian Standards, New Delhi
Zurück zum Zitat IS 2720 Part 17 (1986) Methods of test for soils: laboratory determination of permeability (second revision). Bureau of Indian Standards, New Delhi IS 2720 Part 17 (1986) Methods of test for soils: laboratory determination of permeability (second revision). Bureau of Indian Standards, New Delhi
Zurück zum Zitat IS: 2720 Part 10 (1991) Methods of test for soils: determination of unconfined compressive strength for soil. Bureau of Indian Standards, New Delhi IS: 2720 Part 10 (1991) Methods of test for soils: determination of unconfined compressive strength for soil. Bureau of Indian Standards, New Delhi
Zurück zum Zitat Jadhao PD, Nagarnaik PB (2009) Randomly reinforced flyash as embankment material. In: Second international conference on emerging trends in engineering and technology, IEEE, Institute of Electrical and Electronics Engineers, Nagpur, India, pp 438–443 Jadhao PD, Nagarnaik PB (2009) Randomly reinforced flyash as embankment material. In: Second international conference on emerging trends in engineering and technology, IEEE, Institute of Electrical and Electronics Engineers, Nagpur, India, pp 438–443
Zurück zum Zitat Jakka RS, Ramana GV, Datta M (2010) Liquefaction behavior of loose and compacted pond ash. Soil Dyn Earthquake Eng 30(7):580–590CrossRef Jakka RS, Ramana GV, Datta M (2010) Liquefaction behavior of loose and compacted pond ash. Soil Dyn Earthquake Eng 30(7):580–590CrossRef
Zurück zum Zitat Kaniraj SR, Gayathri V (2003) Geotechnical behaviour of flyash mixed with randomly oriented fiber inclusions. J Geotext Geomembr 21(3):123–149CrossRef Kaniraj SR, Gayathri V (2003) Geotechnical behaviour of flyash mixed with randomly oriented fiber inclusions. J Geotext Geomembr 21(3):123–149CrossRef
Zurück zum Zitat Kaniraj SR, Havanagi VG (2001) Behaviour of cement-stabilized fiber-reinforced flyash-soil mixtures. J Geotech Geo-environ Eng 127(7):574–584CrossRef Kaniraj SR, Havanagi VG (2001) Behaviour of cement-stabilized fiber-reinforced flyash-soil mixtures. J Geotech Geo-environ Eng 127(7):574–584CrossRef
Zurück zum Zitat Kaya A, Durukan S (2004) Utilization of bentonite-embedded zeolite as clay liner. Appl Clay Sci 25(1–2):83–91CrossRef Kaya A, Durukan S (2004) Utilization of bentonite-embedded zeolite as clay liner. Appl Clay Sci 25(1–2):83–91CrossRef
Zurück zum Zitat Kumar S, Tabor E (2003) Strength characteristics of silty clay reinforced with randomly oriented nylon fibers. Electron J Geotech Eng 8(1):774–782 Kumar S, Tabor E (2003) Strength characteristics of silty clay reinforced with randomly oriented nylon fibers. Electron J Geotech Eng 8(1):774–782
Zurück zum Zitat Kumar R, Kanaujia VK, Chandra D (1999) Engineering behaviour of fiber-reinforced pond ash and silty sand. Geosynth Int 6(6):509–518CrossRef Kumar R, Kanaujia VK, Chandra D (1999) Engineering behaviour of fiber-reinforced pond ash and silty sand. Geosynth Int 6(6):509–518CrossRef
Zurück zum Zitat Maher MH, Ho YC (1993) Behavior of fiber-reinforced cemented sand under static and cyclic loads. Geotech Test J 16(3):330–338CrossRef Maher MH, Ho YC (1993) Behavior of fiber-reinforced cemented sand under static and cyclic loads. Geotech Test J 16(3):330–338CrossRef
Zurück zum Zitat Maher MH, Ho YC (1994) Mechanical-properties of kaolinite fibre soil composite. J Geotech Eng 120(8):1381–1393CrossRef Maher MH, Ho YC (1994) Mechanical-properties of kaolinite fibre soil composite. J Geotech Eng 120(8):1381–1393CrossRef
Zurück zum Zitat Miller CJ, Rifai S (2004) Fiber reinforcement for waste containment soil liners. J Environ Eng 130(8):891–895CrossRef Miller CJ, Rifai S (2004) Fiber reinforcement for waste containment soil liners. J Environ Eng 130(8):891–895CrossRef
Zurück zum Zitat Mirzababaei M, Miraftab M, Mohamed M, McMahon P (2013) Impact of carpet waste fibre addition on swelling properties of compacted clays. Geotech Geol Eng 31(1):173–182CrossRef Mirzababaei M, Miraftab M, Mohamed M, McMahon P (2013) Impact of carpet waste fibre addition on swelling properties of compacted clays. Geotech Geol Eng 31(1):173–182CrossRef
Zurück zum Zitat Nataraj MS, McManis KL (1997) Strength and deformation properties of soils reinforced with fibrillated fibers. Geosyn Int 4(1):65–79CrossRef Nataraj MS, McManis KL (1997) Strength and deformation properties of soils reinforced with fibrillated fibers. Geosyn Int 4(1):65–79CrossRef
Zurück zum Zitat Noor Fatani M, Bauer GH, Al-Joulani N (1991) Reinforcing soil with aligned and randomly oriented metallic fibers. Geotech Test J 14(1):78–87CrossRef Noor Fatani M, Bauer GH, Al-Joulani N (1991) Reinforcing soil with aligned and randomly oriented metallic fibers. Geotech Test J 14(1):78–87CrossRef
Zurück zum Zitat Patel SK, Singh B (2017) Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states. Geotech Geol Eng 35(4):1767–1781CrossRef Patel SK, Singh B (2017) Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states. Geotech Geol Eng 35(4):1767–1781CrossRef
Zurück zum Zitat Puppala AJ, Musenda C (2000) Effects of fiber reinforcement on strength and volume change in expansive soils. Transp Res Rec 1736(1):134–140CrossRef Puppala AJ, Musenda C (2000) Effects of fiber reinforcement on strength and volume change in expansive soils. Transp Res Rec 1736(1):134–140CrossRef
Zurück zum Zitat Ranjan G, Vasan RM, Charan HD (1996) Probabilistic analysis of randomly distributed fiber-reinforced soil. J Geotech Eng 122(6):419–426CrossRef Ranjan G, Vasan RM, Charan HD (1996) Probabilistic analysis of randomly distributed fiber-reinforced soil. J Geotech Eng 122(6):419–426CrossRef
Zurück zum Zitat Rout S, Singh SP (2017) Assessing the suitability of compacted bentonite-pond ash mixes as landfill liner. Contemporary issues on geo-environmental engineering, GeoMEast 2017. Sustainable civil infrastructures. Springer, Cham, pp 314–327 Rout S, Singh SP (2017) Assessing the suitability of compacted bentonite-pond ash mixes as landfill liner. Contemporary issues on geo-environmental engineering, GeoMEast 2017. Sustainable civil infrastructures. Springer, Cham, pp 314–327
Zurück zum Zitat Sarkar R, Abbas SM, Shahu JT (2012) Geotechnical behavior of randomly oriented fiber reinforced pond ashes available in Delhi regions. Int J Earth Sci Eng 5(1):44–50 Sarkar R, Abbas SM, Shahu JT (2012) Geotechnical behavior of randomly oriented fiber reinforced pond ashes available in Delhi regions. Int J Earth Sci Eng 5(1):44–50
Zurück zum Zitat Singh HP (2011) Strength characteristics of flyash reinforced with geosynthetics fiber. Int J Earth Sci Eng 4(6):969–971 Singh HP (2011) Strength characteristics of flyash reinforced with geosynthetics fiber. Int J Earth Sci Eng 4(6):969–971
Zurück zum Zitat Singh SP, Sharan A (2015) Strength characteristics of fiber-reinforced compacted pond ash. Int J Geotech Eng 9(2):132–139CrossRef Singh SP, Sharan A (2015) Strength characteristics of fiber-reinforced compacted pond ash. Int J Geotech Eng 9(2):132–139CrossRef
Zurück zum Zitat Sreedhar MVS, Srinivasa Reddy Y, Jyothi A (2011) CBR Characteristics of pond ash with reinforcement in fabric and fiber forms, in the Indian precambrian. In: Proceedings of Indian geotechnical conference. December 15–17, Kochi, India, Scientific Publishers pp 549–552 Sreedhar MVS, Srinivasa Reddy Y, Jyothi A (2011) CBR Characteristics of pond ash with reinforcement in fabric and fiber forms, in the Indian precambrian. In: Proceedings of Indian geotechnical conference. December 15–17, Kochi, India, Scientific Publishers pp 549–552
Zurück zum Zitat Tay YY, Stewart DI, Cousens TW (2001) Shrinkage and desiccation cracking in bentonite–sand landfill liners. Eng Geol 60(1–4):263–274CrossRef Tay YY, Stewart DI, Cousens TW (2001) Shrinkage and desiccation cracking in bentonite–sand landfill liners. Eng Geol 60(1–4):263–274CrossRef
Metadaten
Titel
Influence of Fibers on Hydro-Mechanical Properties of Bentonitic Mixtures
verfasst von
Suryaleen Rout
Suresh Prasad Singh
Publikationsdatum
29.01.2020
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 3/2020
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-020-01214-8

Weitere Artikel der Ausgabe 3/2020

Geotechnical and Geological Engineering 3/2020 Zur Ausgabe