Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2012

01.10.2012 | Research Paper

Influence of NaBH4 on the size, composition, and magnetic properties of CoFe2O4 nanoparticles synthesized by hydrothermal method

verfasst von: Muhammad Yasir Rafique, Liqing Pan, Qurat-ul-ain Javed, Muhammad Zubair Iqbal, Lihong Yang

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cobalt ferrite nanoparticles are prepared by varying the concentration of reducing agent NaBH4 by hydrothermal method. Transmission electron microscope observations show that particle size increases from 11.47 to 28.05 nm by increasing the concentration of NaBH4 from 30 to 70 mM. Williamson–Hall analysis on X-ray diffraction patterns show that strain increases in nanoparticles with increase in quantity of NaBH4. Energy dispersive X-ray analysis and Inductive coupled plasma atomic emission spectroscopy indicate large amount of oxygen deficiency which increase with amount of NaBH4. The magnetic hysteresis loops measured at room temperature clearly illustrate the influence of concentration of NaBH4 on magnetic properties of CoFe2O4. Saturation magnetization, coercivity, and anisotropy constant increases with the quantity of NaBH4 and they reach the maximum values of 93 emu/g, 2210 Oe, and 5.28 × 10J/m3, respectively, with addition of 70 mM NaBH4. Estimation of micromagnetic parameters (exchange length, critical single-domain volume, etc.) suggests that prepared nanoparticles of CoFe2O4 are in single domain and size lies between superparamagnetic to critical single domain. The enhancement of magnetization is attributed to oxygen deficiency. This technique is useful in tuning the size and magnetic properties of cobalt ferrite nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed SR, Ogale SB, Papaefthymiou GC, Ramesh R, Kofinas P (2008) Magnetic properties of CoFe2O4 nanoparticles synthesized through a block copolymer nanoreactor route. Appl Phys Lett 80:1616–1618CrossRef Ahmed SR, Ogale SB, Papaefthymiou GC, Ramesh R, Kofinas P (2008) Magnetic properties of CoFe2O4 nanoparticles synthesized through a block copolymer nanoreactor route. Appl Phys Lett 80:1616–1618CrossRef
Zurück zum Zitat Angelescu DE, Bhatt RN (2002) Effective interaction Hamiltonian of polaron pairs in diluted magnetic semiconductors. Phys Rev B 65:075211–075218CrossRef Angelescu DE, Bhatt RN (2002) Effective interaction Hamiltonian of polaron pairs in diluted magnetic semiconductors. Phys Rev B 65:075211–075218CrossRef
Zurück zum Zitat Ayyappan S, Philip J, Raj B (2009) Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles. J Phys Chem C 113:590–596CrossRef Ayyappan S, Philip J, Raj B (2009) Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles. J Phys Chem C 113:590–596CrossRef
Zurück zum Zitat Baranchikov AE, Olga S, Polezhaeva OS, Ivanov VK, Tretyakov YD (2010) Lattice expansion and oxygen non-stoichiometry of nanocrystalline ceria. CrystEngComm 12:3531CrossRef Baranchikov AE, Olga S, Polezhaeva OS, Ivanov VK, Tretyakov YD (2010) Lattice expansion and oxygen non-stoichiometry of nanocrystalline ceria. CrystEngComm 12:3531CrossRef
Zurück zum Zitat Bozorth RM, Tilden EF, Williams A (1955) Anisotropy and magnetostriction of some ferrites. J Phys Rev 99:1788–1798CrossRef Bozorth RM, Tilden EF, Williams A (1955) Anisotropy and magnetostriction of some ferrites. J Phys Rev 99:1788–1798CrossRef
Zurück zum Zitat Buschow KHJ (1995) Hand book of magnetic material, vol 8. Elsevier, Oxford, p 212 Buschow KHJ (1995) Hand book of magnetic material, vol 8. Elsevier, Oxford, p 212
Zurück zum Zitat Chakraverty S, Bandyopadhyay M (2007) Coercivity of magnetic nanoparticles: a stochastic model. J Phys Condens Matter 19:216201CrossRef Chakraverty S, Bandyopadhyay M (2007) Coercivity of magnetic nanoparticles: a stochastic model. J Phys Condens Matter 19:216201CrossRef
Zurück zum Zitat Chakraverty S, Mitra S, Mandal K, Nambissan PMG, Chattopadhyay S (2005) Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2. Phys Rev B 71:024115–024118CrossRef Chakraverty S, Mitra S, Mandal K, Nambissan PMG, Chattopadhyay S (2005) Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2. Phys Rev B 71:024115–024118CrossRef
Zurück zum Zitat Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, New York, p 506 Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, New York, p 506
Zurück zum Zitat Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K, Djayaprawira DJ, Takahashi M, Joseyphus RJ, Narayanasamy A (2003) Unusually high coercivity and critical single domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl Phys Lett 83:2862–2864CrossRef Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K, Djayaprawira DJ, Takahashi M, Joseyphus RJ, Narayanasamy A (2003) Unusually high coercivity and critical single domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl Phys Lett 83:2862–2864CrossRef
Zurück zum Zitat Craik DJ (1975) Magnetic oxide part 2. Wiley, New York, p 703 Craik DJ (1975) Magnetic oxide part 2. Wiley, New York, p 703
Zurück zum Zitat Dwivedi GD, Tseng KF, Chan CL, Shahi P, Lourembam J,Chatterjee B, Ghosh AK, Yang HD, Chatterjee S (2010) Signature of ferroelectricity in magnetically ordered Mo doped CoFe2O4. Phys Rev B 82:134428-1-4 Dwivedi GD, Tseng KF, Chan CL, Shahi P, Lourembam J,Chatterjee B, Ghosh AK, Yang HD, Chatterjee S (2010) Signature of ferroelectricity in magnetically ordered Mo doped CoFe2O4. Phys Rev B 82:134428-1-4
Zurück zum Zitat Elwell D, Parker R (1964) The relationship between Bohr magneton number and oxygen deficiency in nickel ferrite. Philos Mag 10(104):253–261CrossRef Elwell D, Parker R (1964) The relationship between Bohr magneton number and oxygen deficiency in nickel ferrite. Philos Mag 10(104):253–261CrossRef
Zurück zum Zitat Fan HM, Yi JB, Yang Y, Kho KW, Tan HR, Shen ZX, Ding J, Sun XW, Olivo MC, Feng YP (2009) Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 3:2798–2808CrossRef Fan HM, Yi JB, Yang Y, Kho KW, Tan HR, Shen ZX, Ding J, Sun XW, Olivo MC, Feng YP (2009) Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 3:2798–2808CrossRef
Zurück zum Zitat Fritsch D, Ederer C (2010) Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principle. Phys Rev B 82:11–104117CrossRef Fritsch D, Ederer C (2010) Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principle. Phys Rev B 82:11–104117CrossRef
Zurück zum Zitat Gajbhiye NS, Srivastava S, Kurian S, Behtaand BR, Singh VN (2010) Magnetic field assisted hydrothermal synthesis of CoFe2O4 nanowires. J Phys Conf Ser 200:072093CrossRef Gajbhiye NS, Srivastava S, Kurian S, Behtaand BR, Singh VN (2010) Magnetic field assisted hydrothermal synthesis of CoFe2O4 nanowires. J Phys Conf Ser 200:072093CrossRef
Zurück zum Zitat Giri AK, Kirkpatrick EM, Moongkhamklang P, Majetich SA, Harris VG (2002) Photomagnetism and structure in cobalt ferrite nanoparticles. Appl Phys Lett 80:2341–2343CrossRef Giri AK, Kirkpatrick EM, Moongkhamklang P, Majetich SA, Harris VG (2002) Photomagnetism and structure in cobalt ferrite nanoparticles. Appl Phys Lett 80:2341–2343CrossRef
Zurück zum Zitat Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LM, Mun JS, Mikhov M (1998) Magnetic properties and Mossbauer spectra of nanosized CoFe2O4 powders. J Magn Magn Mater 183:163–172CrossRef Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LM, Mun JS, Mikhov M (1998) Magnetic properties and Mossbauer spectra of nanosized CoFe2O4 powders. J Magn Magn Mater 183:163–172CrossRef
Zurück zum Zitat Guimaraes AP (2009) Principle of nanomagnetism. Springer, New York, pp 37–69CrossRef Guimaraes AP (2009) Principle of nanomagnetism. Springer, New York, pp 37–69CrossRef
Zurück zum Zitat Ibusuki T, Kojima S, Kitakami O, Shimada Y (2001) Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE Trans Magn 37:2223–2225CrossRef Ibusuki T, Kojima S, Kitakami O, Shimada Y (2001) Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE Trans Magn 37:2223–2225CrossRef
Zurück zum Zitat Jacintho GVM, Brolo AG, Corio P, Suarez PAZ, Rubim JCJ (2009) Structural investigation of MFe2O4 (M = Fe, Co) magnetic fluids. J Phys Chem C 113:7684–7691CrossRef Jacintho GVM, Brolo AG, Corio P, Suarez PAZ, Rubim JCJ (2009) Structural investigation of MFe2O4 (M = Fe, Co) magnetic fluids. J Phys Chem C 113:7684–7691CrossRef
Zurück zum Zitat Jin C, Liu H, Li P, Kuang DF, Bai HL (2011) Anomalous magnetic properties of the epitaxial CoFe2O4 films prepared by reactive cosputtering. J Appl Phys 110:5–013917 Jin C, Liu H, Li P, Kuang DF, Bai HL (2011) Anomalous magnetic properties of the epitaxial CoFe2O4 films prepared by reactive cosputtering. J Appl Phys 110:5–013917
Zurück zum Zitat Joshi HM, Lin YP, Aslam M, Prasad PV, Schultz-Sikma EA, Edelman R, Meade T, Dravid VPJ (2009) Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113:17761–17767CrossRef Joshi HM, Lin YP, Aslam M, Prasad PV, Schultz-Sikma EA, Edelman R, Meade T, Dravid VPJ (2009) Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113:17761–17767CrossRef
Zurück zum Zitat Ju YW, Park JH, Jung HR, Cho SJ, Lee W (2008) Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. J Mater Sci Eng B 147:7–12CrossRef Ju YW, Park JH, Jung HR, Cho SJ, Lee W (2008) Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. J Mater Sci Eng B 147:7–12CrossRef
Zurück zum Zitat Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396CrossRef Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396CrossRef
Zurück zum Zitat Kopitsa GP, Baranchikov AE, Ivanova OS, Yapryntsev AD, Grigoriev SV, Pranzas PK, Ivanov VK (2012) Effect of high intensity ultrasound on the mesostructure of hydrated zirconia. J Phys Conf Ser 340:012057CrossRef Kopitsa GP, Baranchikov AE, Ivanova OS, Yapryntsev AD, Grigoriev SV, Pranzas PK, Ivanov VK (2012) Effect of high intensity ultrasound on the mesostructure of hydrated zirconia. J Phys Conf Ser 340:012057CrossRef
Zurück zum Zitat Limaye MV, Singh SB, Sadgopal KD, Kothari D, Reddy VR, Gupta A, Sathe V, Choudhary RJ, Kulkarni SK (2009) High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J Phys Chem B 113:9070–9076CrossRef Limaye MV, Singh SB, Sadgopal KD, Kothari D, Reddy VR, Gupta A, Sathe V, Choudhary RJ, Kulkarni SK (2009) High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J Phys Chem B 113:9070–9076CrossRef
Zurück zum Zitat Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308:289–295CrossRef Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308:289–295CrossRef
Zurück zum Zitat Majetich SA, Scott H, Kirkpatrick EM, Chowdary K, Gallagher K, McHenry ME (1997) Magnetic nanoparticles and magnetocrystalline anisotropy. Nanostruct Mater 9:291–300CrossRef Majetich SA, Scott H, Kirkpatrick EM, Chowdary K, Gallagher K, McHenry ME (1997) Magnetic nanoparticles and magnetocrystalline anisotropy. Nanostruct Mater 9:291–300CrossRef
Zurück zum Zitat Pillai V, Shah DO (1996) Magnetic properties of CoFe2O4 nanoparticles synthesized through a block copolymer nanoreactor route. J Magn Magn Mater 163:243–248CrossRef Pillai V, Shah DO (1996) Magnetic properties of CoFe2O4 nanoparticles synthesized through a block copolymer nanoreactor route. J Magn Magn Mater 163:243–248CrossRef
Zurück zum Zitat Ramos AV, Santos TS, Miao GX, Guittet MJ, Moussy JB, Moodera JS (2008) Influence of oxidation on the spin-filtering properties of CoFe2O4 and the resultant spin polarization. Phys Rev B 78:180402–180404CrossRef Ramos AV, Santos TS, Miao GX, Guittet MJ, Moussy JB, Moodera JS (2008) Influence of oxidation on the spin-filtering properties of CoFe2O4 and the resultant spin polarization. Phys Rev B 78:180402–180404CrossRef
Zurück zum Zitat Seip CT, Carpenter EE, O’Connor CJ (1998) Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles. IEEE Trans Magn 34:1111–1113CrossRef Seip CT, Carpenter EE, O’Connor CJ (1998) Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles. IEEE Trans Magn 34:1111–1113CrossRef
Zurück zum Zitat Spaldin NA (2010) Magnetic material fundamental and application, 2nd edn. Cambridge University Press, Cambridge, p 200CrossRef Spaldin NA (2010) Magnetic material fundamental and application, 2nd edn. Cambridge University Press, Cambridge, p 200CrossRef
Zurück zum Zitat Torres CER, Golmar F, Ziese M, Esquinazi P, Heluani SP (2011) Evidence of defect-induced ferromagnetism in ZnFe2O4 thin films. Phys Rev B 84:064404–064405CrossRef Torres CER, Golmar F, Ziese M, Esquinazi P, Heluani SP (2011) Evidence of defect-induced ferromagnetism in ZnFe2O4 thin films. Phys Rev B 84:064404–064405CrossRef
Zurück zum Zitat Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett 3:1739–1743CrossRef Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett 3:1739–1743CrossRef
Zurück zum Zitat Wang YC, Ding J, Yi JB, Liu BH, Yu T, Shen ZX (2004) High-coercivity Co-ferrite thin films on (100)-SiO2 substrate. Appl Phys Lett 84:2596–2598CrossRef Wang YC, Ding J, Yi JB, Liu BH, Yu T, Shen ZX (2004) High-coercivity Co-ferrite thin films on (100)-SiO2 substrate. Appl Phys Lett 84:2596–2598CrossRef
Zurück zum Zitat Yang A, Chinnasamy CN, Greneche JM, Chen Y, Yoon SD, Chen Z, Hsu K, Cai Z, Kate Ziemer K, Vittoria C, Harris VG (2009) Enhanced Neel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion. Nanotechnology 20:185704–185709CrossRef Yang A, Chinnasamy CN, Greneche JM, Chen Y, Yoon SD, Chen Z, Hsu K, Cai Z, Kate Ziemer K, Vittoria C, Harris VG (2009) Enhanced Neel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion. Nanotechnology 20:185704–185709CrossRef
Zurück zum Zitat Zhang Y, Liu Y, Yang Z, Xiong R, Shi J (2011) Synthesis of CoFe2O4 nanoparticles with tunable magnetism by the modified hydrothermal method. J Nanopart Res 11:4557–4563CrossRef Zhang Y, Liu Y, Yang Z, Xiong R, Shi J (2011) Synthesis of CoFe2O4 nanoparticles with tunable magnetism by the modified hydrothermal method. J Nanopart Res 11:4557–4563CrossRef
Zurück zum Zitat Zhao D, Wu X, Guan H, Han E (2007) Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles. J Supercrit Fluids 42:226–233CrossRef Zhao D, Wu X, Guan H, Han E (2007) Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles. J Supercrit Fluids 42:226–233CrossRef
Zurück zum Zitat Zhu ZR, Li XY, Zhao QD, Shi Y, Li H, Chen GH (2011) Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 particles with porous superstructure fabricated by a modified chemical coprecipitation method. J Nanopart Res 13:2147–2155CrossRef Zhu ZR, Li XY, Zhao QD, Shi Y, Li H, Chen GH (2011) Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 particles with porous superstructure fabricated by a modified chemical coprecipitation method. J Nanopart Res 13:2147–2155CrossRef
Metadaten
Titel
Influence of NaBH4 on the size, composition, and magnetic properties of CoFe2O4 nanoparticles synthesized by hydrothermal method
verfasst von
Muhammad Yasir Rafique
Liqing Pan
Qurat-ul-ain Javed
Muhammad Zubair Iqbal
Lihong Yang
Publikationsdatum
01.10.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2012
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1189-6

Weitere Artikel der Ausgabe 10/2012

Journal of Nanoparticle Research 10/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.