Skip to main content

2018 | OriginalPaper | Buchkapitel

Integration of Pulse Combustion in Air Bottoming Cycle Power Plants

verfasst von : Mohamed Gadalla, Mohammad Saghafifar

Erschienen in: Exergy for A Better Environment and Improved Sustainability 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To enhance the air bootoming cycle's efficiency (ABC), the integration of pulse combustor in ABC configurations is proposed. Two different configurations for pulse combustor incorporation in ABC are recommended including pulse combustor replacing the topping cycle combustion chamber and pulse combustor integration as a supplementary firing in the bottoming cycle. Sensitivity analysis is performed by controlling different design variables and investigating their effects on both thermal efficiency and net specific work output. Moreover, a detailed thermodynamic optimization is performed to achieve the highest power enhancement resulting from the implementation of pulse combustion for cycle configuration. Integration of pulse combustor in the topping cycle can improve the plant efficiency to 50.8% whereas the maximum possible ABC’s efficiency is about 43.6%. Finally, the integration of a pulse combustor as a supplementary firing in the bottoming cycle would enhance the overall plant efficiency to reach about 41.8%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arora, J.: Introduction to Optimum Design, 2nd edn. Academic, San Diego (2004) Arora, J.: Introduction to Optimum Design, 2nd edn. Academic, San Diego (2004)
Zurück zum Zitat Bianchi, M., De Pascale, A.: Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl. Energy. 88(5), 1500–1509 (2011)CrossRef Bianchi, M., De Pascale, A.: Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl. Energy. 88(5), 1500–1509 (2011)CrossRef
Zurück zum Zitat Bolland, O., Hånde, B., Foerde, M.: Air bottoming cycle: use of gas turbine waste heat for power generation. J. Eng. Gas Turbines Power. 118, 359–368 (1996)CrossRef Bolland, O., Hånde, B., Foerde, M.: Air bottoming cycle: use of gas turbine waste heat for power generation. J. Eng. Gas Turbines Power. 118, 359–368 (1996)CrossRef
Zurück zum Zitat Burcat, A.: Thermochemical data for combustion calculations. In: Combustion Chemistry, pp. 455–473. Springer, New York (1984)CrossRef Burcat, A.: Thermochemical data for combustion calculations. In: Combustion Chemistry, pp. 455–473. Springer, New York (1984)CrossRef
Zurück zum Zitat Chacartegui, R., Sánchez, D., Muñoz, J.M., Sánchez, T.: Alternative ORC bottoming cycles FOR combined cycle power plants. Appl. Energy. 86(10), 2162–2170 (2009)CrossRef Chacartegui, R., Sánchez, D., Muñoz, J.M., Sánchez, T.: Alternative ORC bottoming cycles FOR combined cycle power plants. Appl. Energy. 86(10), 2162–2170 (2009)CrossRef
Zurück zum Zitat Chmielniak, T., Czaja, D., Lepszy, S.: Technical and Economical Analysis of the Gas Turbine air Bottoming Cycle, pp. 1–9. ASME, Copenhagen (2012) Chmielniak, T., Czaja, D., Lepszy, S.: Technical and Economical Analysis of the Gas Turbine air Bottoming Cycle, pp. 1–9. ASME, Copenhagen (2012)
Zurück zum Zitat Czaja, D., Chmielniak, T., Lepszy, S.: Selection of gas turbine air bottoming cycle for polish compressor stations. Journal of Power Technologies. 93, 66–77 (2013) Czaja, D., Chmielniak, T., Lepszy, S.: Selection of gas turbine air bottoming cycle for polish compressor stations. Journal of Power Technologies. 93, 66–77 (2013)
Zurück zum Zitat El-Gizawy, I.G., Gadalla, M.A.: Performance evaluation of a gas turbine cycle with a pulse combustion system. Energy Conversion Engineering Conference, 1997. IECEC-97, Proceedings of the 32nd Intersociety. s.l., IEEE, Honolulu, HI, USA (1997) El-Gizawy, I.G., Gadalla, M.A.: Performance evaluation of a gas turbine cycle with a pulse combustion system. Energy Conversion Engineering Conference, 1997. IECEC-97, Proceedings of the 32nd Intersociety. s.l., IEEE, Honolulu, HI, USA (1997)
Zurück zum Zitat Farrell, W.: Air cycle thermodynamic conversion system. Patent No. US patent 4.751.814A, New York (1988) Farrell, W.: Air cycle thermodynamic conversion system. Patent No. US patent 4.751.814A, New York (1988)
Zurück zum Zitat Gadalla, M.A.: Performance Improvement of a Simple Gas Turbine Power Station Using Pulse Combustion Technology, pp. 107–116. ASME, Baltimore (2004) Gadalla, M.A.: Performance Improvement of a Simple Gas Turbine Power Station Using Pulse Combustion Technology, pp. 107–116. ASME, Baltimore (2004)
Zurück zum Zitat Ghazikhani, M., Passandideh-fard, M.: Two new high performance cycles for gas turbine with air bottoming. Energy. 36, 294–304 (2011)CrossRef Ghazikhani, M., Passandideh-fard, M.: Two new high performance cycles for gas turbine with air bottoming. Energy. 36, 294–304 (2011)CrossRef
Zurück zum Zitat Hirs, G., Wagener, M., Korobitsyn, M.: Performance Analysis of the Dual Gas Turbine Combined Cycle, pp. 255–259. ASME, San Francisco, USA (1995) Hirs, G., Wagener, M., Korobitsyn, M.: Performance Analysis of the Dual Gas Turbine Combined Cycle, pp. 255–259. ASME, San Francisco, USA (1995)
Zurück zum Zitat Janus, M.C., Richards, G.A., Gemmen, R.S., Johnson, E.K.: An analytical approach to understanding the “pressure gain” combustor. J. Energy Resour. Technol. 119(1), 49–54 (1997)CrossRef Janus, M.C., Richards, G.A., Gemmen, R.S., Johnson, E.K.: An analytical approach to understanding the “pressure gain” combustor. J. Energy Resour. Technol. 119(1), 49–54 (1997)CrossRef
Zurück zum Zitat Kaikko, J., Hunyadi, L.: Air Bottoming Cycle for Cogeneration of Power, Heat and Cooling, 2nd International Heat Powered Conference HPC'01, pp. 187–194, Paris, France (2001) Kaikko, J., Hunyadi, L.: Air Bottoming Cycle for Cogeneration of Power, Heat and Cooling, 2nd International Heat Powered Conference HPC'01, pp. 187–194, Paris, France (2001)
Zurück zum Zitat Kaikko, J., Hunyadi, L., Reunanen, A., Larjola, J.: Comparison Between Air Bottoming Cycle and Organic Rankine Cycle as Bottoming Cycles, pp. 195–202, Paris (2001) Kaikko, J., Hunyadi, L., Reunanen, A., Larjola, J.: Comparison Between Air Bottoming Cycle and Organic Rankine Cycle as Bottoming Cycles, pp. 195–202, Paris (2001)
Zurück zum Zitat Kayadelen, H.K., Ust, Y.: Performance and environment as objectives in multi-criterion optimization of steam injected gas turbine cycles. Appl. Therm. Eng. 71(1), 184–196 (2014)CrossRef Kayadelen, H.K., Ust, Y.: Performance and environment as objectives in multi-criterion optimization of steam injected gas turbine cycles. Appl. Therm. Eng. 71(1), 184–196 (2014)CrossRef
Zurück zum Zitat Kee, R.J., Rupley, F.M., Miller, J.A.: The Chemkin Thermodynamic Data Base. Sandia National Laboratories Report, San Diego (1990) Kee, R.J., Rupley, F.M., Miller, J.A.: The Chemkin Thermodynamic Data Base. Sandia National Laboratories Report, San Diego (1990)
Zurück zum Zitat Khaldi, F.: Air Bottoming Cycle for Hybrid Solar-Gas Power Plants. World Renewable Energy Congress, Linkoping, Sweden, May 8–13 (2011) Khaldi, F.: Air Bottoming Cycle for Hybrid Solar-Gas Power Plants. World Renewable Energy Congress, Linkoping, Sweden, May 8–13 (2011)
Zurück zum Zitat Korobitsyn, M.: Industrial applications of the air bottoming cycle. Energy Convers. Manag. 43(6), 1311–1322 (2002)CrossRef Korobitsyn, M.: Industrial applications of the air bottoming cycle. Energy Convers. Manag. 43(6), 1311–1322 (2002)CrossRef
Zurück zum Zitat Lampinen, M.J., Turunen, R., Köykkä, M.: Thermodynamic analysis of a pulse combustion system and its application to gas turbines. Int. J. Energy Res. 16(4), 259–276 (1992)CrossRef Lampinen, M.J., Turunen, R., Köykkä, M.: Thermodynamic analysis of a pulse combustion system and its application to gas turbines. Int. J. Energy Res. 16(4), 259–276 (1992)CrossRef
Zurück zum Zitat MathWorks, Inc.: MATLAB and Optimization Toolbox Release. The MathWorks, Inc., Natick (2012) MathWorks, Inc.: MATLAB and Optimization Toolbox Release. The MathWorks, Inc., Natick (2012)
Zurück zum Zitat Najjar, Y.S.H., Zaamout, M.: Performance analysis of gas turbine air bottoming combined system. Energy Convers. 37(4), 399–403 (1996)CrossRef Najjar, Y.S.H., Zaamout, M.: Performance analysis of gas turbine air bottoming combined system. Energy Convers. 37(4), 399–403 (1996)CrossRef
Zurück zum Zitat Narayanaswami, L., Richards, G.A.: Pressure-gain combustion: Part I—model development. J. Eng. Gas Turbines Power. 118(3), 461–468 (1996)CrossRef Narayanaswami, L., Richards, G.A.: Pressure-gain combustion: Part I—model development. J. Eng. Gas Turbines Power. 118(3), 461–468 (1996)CrossRef
Zurück zum Zitat Paanu, T., Niemi, S., Rantanen, P.: Waste Heat Recovery–Bottoming Cycle Alternatives. Proceedings of the University of Vaasa, Reports, Vaasa (2012) Paanu, T., Niemi, S., Rantanen, P.: Waste Heat Recovery–Bottoming Cycle Alternatives. Proceedings of the University of Vaasa, Reports, Vaasa (2012)
Zurück zum Zitat Peng, S., Hong, H., Jin, H., Wang, Z.: An integrated solar thermal power system using intercooled gas turbine. Energy. 44(1), 732–740 (2012)CrossRef Peng, S., Hong, H., Jin, H., Wang, Z.: An integrated solar thermal power system using intercooled gas turbine. Energy. 44(1), 732–740 (2012)CrossRef
Zurück zum Zitat Poullikkas, A.: An overview of current and future sustainable gas turbine technologies. Renew. Sustain. Energy Rev. 9, 409–443 (2005)CrossRef Poullikkas, A.: An overview of current and future sustainable gas turbine technologies. Renew. Sustain. Energy Rev. 9, 409–443 (2005)CrossRef
Zurück zum Zitat Saghafifar, M., Poullikkas, A.: Thermo-economic optimization of air bottoming cycles. J. Power Technol. 95(3), 211–220 (2015) Saghafifar, M., Poullikkas, A.: Thermo-economic optimization of air bottoming cycles. J. Power Technol. 95(3), 211–220 (2015)
Zurück zum Zitat Saghafifar, M., Poullikkas, A.: Comparative analysis of power augmentation in ABC power plants. Int. J. Sustainable Energy. 36(1), 47–60 (2017) Saghafifar, M., Poullikkas, A.: Comparative analysis of power augmentation in ABC power plants. Int. J. Sustainable Energy. 36(1), 47–60 (2017)
Zurück zum Zitat Sandoz, R., Spelling, J., Laumert, B., Fransson, T.: Air-based bottoming-cycles for water-free hybrid solar gas-turbine power plants. J. Eng. Gas Turbines Power. 135, 101701–101701 (2013)CrossRef Sandoz, R., Spelling, J., Laumert, B., Fransson, T.: Air-based bottoming-cycles for water-free hybrid solar gas-turbine power plants. J. Eng. Gas Turbines Power. 135, 101701–101701 (2013)CrossRef
Zurück zum Zitat Teflissi, R., Ataei, A.: Effect of temperature and gas flow on the efficiency of an air bottoming cycle. J. Renew. Sustainable Energy. 5, 021409 (2013)CrossRef Teflissi, R., Ataei, A.: Effect of temperature and gas flow on the efficiency of an air bottoming cycle. J. Renew. Sustainable Energy. 5, 021409 (2013)CrossRef
Zurück zum Zitat Turns, S.R.: An Introduction to Combustion, 2nd edn. McGraw-Hill, New York (1996) Turns, S.R.: An Introduction to Combustion, 2nd edn. McGraw-Hill, New York (1996)
Zurück zum Zitat Wicks, F.: The Thermodynamic Theory and Design of an Ideal Fuel Burning Engine. Proceedings of the Intersoclety Energy Conversion Engineering Conference, pp. 474–481, Boston, USA (1991) Wicks, F.: The Thermodynamic Theory and Design of an Ideal Fuel Burning Engine. Proceedings of the Intersoclety Energy Conversion Engineering Conference, pp. 474–481, Boston, USA (1991)
Zurück zum Zitat Yue, C., Han, D., Pu, W., He, W.: Comparative analysis of a bottoming transcritical ORC and a Kalina cycle. Energy Convers. Manag. 89, 764–774 (2015)CrossRef Yue, C., Han, D., Pu, W., He, W.: Comparative analysis of a bottoming transcritical ORC and a Kalina cycle. Energy Convers. Manag. 89, 764–774 (2015)CrossRef
Metadaten
Titel
Integration of Pulse Combustion in Air Bottoming Cycle Power Plants
verfasst von
Mohamed Gadalla
Mohammad Saghafifar
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62572-0_53