Skip to main content

2019 | OriginalPaper | Buchkapitel

39. Integration of Soft Actuators Based on a Biomolecular Motor System to Develop Artificial Machines

verfasst von : Jakia Jannat Keya, Kentaro Kayano, Arif Md. Rashedul Kabir, Akira Kakugo

Erschienen in: Soft Actuators

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fabrication of soft actuators that may perform multiple tasks simultaneously, as observed for the complex natural systems, is one of the goals in biomimetics. Biomolecular motor systems are the smallest natural machine that can perform mechanical work with a high efficiency. Because of their wide range of scalability and adaptability, the biomolecular motor systems are promising candidates for developing biomimetic soft actuators. The biological power units are able to convert chemical energy obtained from hydrolysis of adenosine triphosphate (ATP) into mechanical work. By virtue of their highly efficient mechanism of power generation, they are able to form highly ordered structures in living organism, which facilitates their emergent functions. To exploit the advantages of the biomolecular motor systems, nowadays they are used as building blocks of biomimetic soft actuators or devices. In this chapter we discuss the latest applications of a classical biomolecular motor system microtubule/kinesin in designing biomimetic soft actuators and micro devices. Nowadays the microtubule/kinesin system can be reconstructed and self-assembled or integrated to complex hierarchical structures which offer emergent functions. Utilization of biomolecular motor systems can greatly advance the development of highly efficient biomimetic soft actuators which in turn would benefit soft robotics in near future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Miriyev A, Stack K, Lipson H (2017) Soft material for soft actuators. Nat Commun 8:596CrossRef Miriyev A, Stack K, Lipson H (2017) Soft material for soft actuators. Nat Commun 8:596CrossRef
2.
Zurück zum Zitat Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521:467–475CrossRef Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521:467–475CrossRef
4.
Zurück zum Zitat Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294CrossRef Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294CrossRef
5.
Zurück zum Zitat Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRef Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRef
6.
Zurück zum Zitat Osada Y, Gong JP (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837CrossRef Osada Y, Gong JP (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837CrossRef
7.
Zurück zum Zitat Bar-Cohen Y (ed) (2001) Electroactive polymer (EAP) actuators as artificial muscles, reality, potential and challenges. SPIE, Bellingham Bar-Cohen Y (ed) (2001) Electroactive polymer (EAP) actuators as artificial muscles, reality, potential and challenges. SPIE, Bellingham
8.
Zurück zum Zitat Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640CrossRef Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640CrossRef
9.
Zurück zum Zitat Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer, Sunderland Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer, Sunderland
10.
Zurück zum Zitat Harold FM (2001) The way of the cell. Oxford University Press, Oxford Harold FM (2001) The way of the cell. Oxford University Press, Oxford
11.
Zurück zum Zitat Bachand GD, Bouxsein NF, VanDelinder V, Bachand M (2014) Biomolecular motors in nanoscale materials, devices, and systems. WIREs Nanomed Nanobiotechnol 6:163–177CrossRef Bachand GD, Bouxsein NF, VanDelinder V, Bachand M (2014) Biomolecular motors in nanoscale materials, devices, and systems. WIREs Nanomed Nanobiotechnol 6:163–177CrossRef
12.
Zurück zum Zitat Kakugo A, Sugimoto S, Gong JP, Osada Y (2002) Gel machines constructed from chemically cross-linked actin and myosins. Adv Mater 14:1124–1126CrossRef Kakugo A, Sugimoto S, Gong JP, Osada Y (2002) Gel machines constructed from chemically cross-linked actin and myosins. Adv Mater 14:1124–1126CrossRef
13.
14.
Zurück zum Zitat Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand robot swarm. Science 345:795–799CrossRef Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand robot swarm. Science 345:795–799CrossRef
15.
Zurück zum Zitat Schaller V, Weber C, Semmrich C, Frey E, Bausch AR (2010) Polar patterns of driven filaments. Nature 467:73–77CrossRef Schaller V, Weber C, Semmrich C, Frey E, Bausch AR (2010) Polar patterns of driven filaments. Nature 467:73–77CrossRef
16.
Zurück zum Zitat Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K, Chaté H, Oiwa K (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448–452CrossRef Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K, Chaté H, Oiwa K (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448–452CrossRef
17.
Zurück zum Zitat Hess H, Ross JL (2017) Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 46:5570–5587CrossRef Hess H, Ross JL (2017) Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 46:5570–5587CrossRef
18.
Zurück zum Zitat Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203CrossRef Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203CrossRef
19.
Zurück zum Zitat Drabik P, Gusarov S, Kovalenko A (2007) Microtubule stability studied by three-dimensional molecular theory of solvation. Biophys J 92:394–403CrossRef Drabik P, Gusarov S, Kovalenko A (2007) Microtubule stability studied by three-dimensional molecular theory of solvation. Biophys J 92:394–403CrossRef
20.
Zurück zum Zitat Chrétien D, Metoz F, Verde F, Karsenti E, Wade RH (1992) Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J Cell Biol 117:1031–1040CrossRef Chrétien D, Metoz F, Verde F, Karsenti E, Wade RH (1992) Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J Cell Biol 117:1031–1040CrossRef
21.
Zurück zum Zitat Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59CrossRef Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59CrossRef
22.
Zurück zum Zitat Sharp DJ, Rogers GC, Scholey JM (2000) Microtubule motors in mitosis. Nature 407:41–47CrossRef Sharp DJ, Rogers GC, Scholey JM (2000) Microtubule motors in mitosis. Nature 407:41–47CrossRef
23.
Zurück zum Zitat Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158CrossRef Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158CrossRef
24.
Zurück zum Zitat Hunt AJ, Gittes F, Howard J (1994) The force exerted by a single kinesin molecule against a viscous load. Biophys J 67:766–781CrossRef Hunt AJ, Gittes F, Howard J (1994) The force exerted by a single kinesin molecule against a viscous load. Biophys J 67:766–781CrossRef
25.
Zurück zum Zitat Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189CrossRef Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189CrossRef
26.
Zurück zum Zitat Schnapp BJ, Vale RD, Sheetz MP, Reese TS (1985) Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40:455–462CrossRef Schnapp BJ, Vale RD, Sheetz MP, Reese TS (1985) Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40:455–462CrossRef
27.
Zurück zum Zitat Grzybowski BA, Wiles JA, Whitesides GM (2003) Dynamic self-assembly of rings of charged metallic spheres. Phys Rev Lett 90:083903CrossRef Grzybowski BA, Wiles JA, Whitesides GM (2003) Dynamic self-assembly of rings of charged metallic spheres. Phys Rev Lett 90:083903CrossRef
28.
Zurück zum Zitat Hess H, Clemmens J, Brunner C, Doot R, Luna S, Karl-Heinz E, Vogel V (2005) Molecular self-assembly of “nanowires and nanospools” using active transport. Nano Lett 5:629–633CrossRef Hess H, Clemmens J, Brunner C, Doot R, Luna S, Karl-Heinz E, Vogel V (2005) Molecular self-assembly of “nanowires and nanospools” using active transport. Nano Lett 5:629–633CrossRef
29.
Zurück zum Zitat Tamura Y, Kawamura R, Shikinaka K, Kakugo A, Osada Y, Gong JP, Mayama H (2011) Dynamic self-organization and polymorphism of microtubule assembly through active interactions with kinesin. Soft Matter 7:5654–5659CrossRef Tamura Y, Kawamura R, Shikinaka K, Kakugo A, Osada Y, Gong JP, Mayama H (2011) Dynamic self-organization and polymorphism of microtubule assembly through active interactions with kinesin. Soft Matter 7:5654–5659CrossRef
30.
Zurück zum Zitat Idan O, Lam A, Kamcev J, Gonzales J, Agarwal A, Hess H (2012) Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett 12:240–245CrossRef Idan O, Lam A, Kamcev J, Gonzales J, Agarwal A, Hess H (2012) Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett 12:240–245CrossRef
31.
Zurück zum Zitat Hess H (2006) Self-assembly driven by molecular motors. Soft Matter 2:669–677CrossRef Hess H (2006) Self-assembly driven by molecular motors. Soft Matter 2:669–677CrossRef
32.
Zurück zum Zitat Wada S, Kabir AMR, Ito M, Inoue D, Sada K, Kakugo A (2015) Effect of length and rigidity of microtubules on the size of ring-shaped assemblies obtained through active self-organization. Soft Matter 11:1151–1157CrossRef Wada S, Kabir AMR, Ito M, Inoue D, Sada K, Kakugo A (2015) Effect of length and rigidity of microtubules on the size of ring-shaped assemblies obtained through active self-organization. Soft Matter 11:1151–1157CrossRef
33.
Zurück zum Zitat Jeune-Smith Y, Hess H (2010) Engineering the length distribution of microtubules polymerized in vitro. Soft Matter 6:1778–1784CrossRef Jeune-Smith Y, Hess H (2010) Engineering the length distribution of microtubules polymerized in vitro. Soft Matter 6:1778–1784CrossRef
34.
Zurück zum Zitat Inoue D, Kabir AMR, Mayama H, Gong JP, Sada K, Kakugo A (2013) Growth of ring-shaped microtubule assemblies through stepwise active self-organization. Soft Matter 9:7061–7068CrossRef Inoue D, Kabir AMR, Mayama H, Gong JP, Sada K, Kakugo A (2013) Growth of ring-shaped microtubule assemblies through stepwise active self-organization. Soft Matter 9:7061–7068CrossRef
35.
Zurück zum Zitat Ray S, Meyhöfer E, Milligan RA, Howard J (1993) Kinesin follows the microtubule’s protofilament axis. J Cell Biol 121:1083–1093CrossRef Ray S, Meyhöfer E, Milligan RA, Howard J (1993) Kinesin follows the microtubule’s protofilament axis. J Cell Biol 121:1083–1093CrossRef
36.
Zurück zum Zitat Kawamura R, Kakugo A, Shikinaka K, Osada Y, Gong JP (2008) Ring-shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 9:2277–2282CrossRef Kawamura R, Kakugo A, Shikinaka K, Osada Y, Gong JP (2008) Ring-shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 9:2277–2282CrossRef
37.
Zurück zum Zitat Kakugo A, Kabir AMR, Hosoda N, Shikinaka K, Gong JP (2011) Controlled clockwise-counterclockwise motion of the ring-shaped microtubules assembly. Biomacromolecules 12:3394–3399CrossRef Kakugo A, Kabir AMR, Hosoda N, Shikinaka K, Gong JP (2011) Controlled clockwise-counterclockwise motion of the ring-shaped microtubules assembly. Biomacromolecules 12:3394–3399CrossRef
38.
Zurück zum Zitat Wada S, Kabir AMR, Kawamura R, Ito M, Inoue D, Sada K, Kakugo A (2015) Controlling the bias of rotational motion of ring-shaped microtubule assembly. Biomacromolecules 16:374–378CrossRef Wada S, Kabir AMR, Kawamura R, Ito M, Inoue D, Sada K, Kakugo A (2015) Controlling the bias of rotational motion of ring-shaped microtubule assembly. Biomacromolecules 16:374–378CrossRef
39.
40.
Zurück zum Zitat Inoue D, Mahmot B, Kabir AMR, Farhana TI, Tokuraku K, Sada K, Konagaya A, Kakugo A (2015) Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7:18054–18061CrossRef Inoue D, Mahmot B, Kabir AMR, Farhana TI, Tokuraku K, Sada K, Konagaya A, Kakugo A (2015) Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7:18054–18061CrossRef
41.
Zurück zum Zitat Köhler S, Lieleg O, Bausch AR (2008) Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. PLoS One 3:e2736CrossRef Köhler S, Lieleg O, Bausch AR (2008) Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. PLoS One 3:e2736CrossRef
42.
Zurück zum Zitat Saito A, Farhana TI, Kabir AMR, Inoue D, Konagaya A, Sada K, Kakugo A (2017) Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force. RSC Adv 7:13191–13197CrossRef Saito A, Farhana TI, Kabir AMR, Inoue D, Konagaya A, Sada K, Kakugo A (2017) Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force. RSC Adv 7:13191–13197CrossRef
43.
Zurück zum Zitat Yashin VV, Balazs AC (2006) Pattern formation and shape changes in self-oscillating polymer gels. Science 314:798–801CrossRef Yashin VV, Balazs AC (2006) Pattern formation and shape changes in self-oscillating polymer gels. Science 314:798–801CrossRef
44.
Zurück zum Zitat Kabir AMR, Wada S, Inoue D, Tamura Y, Kajihara T, Mayama H, Sada K, Kakugo A, Gong JP (2012) Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air-buffer interface. Soft Matter 8:10863–10867CrossRef Kabir AMR, Wada S, Inoue D, Tamura Y, Kajihara T, Mayama H, Sada K, Kakugo A, Gong JP (2012) Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air-buffer interface. Soft Matter 8:10863–10867CrossRef
45.
Zurück zum Zitat Ito M, Kabir AMR, Islam MS, Inoue D, Wada S, Sada K, Konagaya A, Kakugo A (2016) Mechanical oscillation of dynamic microtubule rings. RSC Adv 6:69149–69155CrossRef Ito M, Kabir AMR, Islam MS, Inoue D, Wada S, Sada K, Konagaya A, Kakugo A (2016) Mechanical oscillation of dynamic microtubule rings. RSC Adv 6:69149–69155CrossRef
46.
Zurück zum Zitat Hess H (2011) Engineering applications of biomolecular motors. Annu Rev Biomed Eng 13:429–450CrossRef Hess H (2011) Engineering applications of biomolecular motors. Annu Rev Biomed Eng 13:429–450CrossRef
47.
Zurück zum Zitat Sanchez T, Welch D, Nicastro D, Dogic Z (2011) Cilia-like beating of active microtubule bundles. Science 333:456–459CrossRef Sanchez T, Welch D, Nicastro D, Dogic Z (2011) Cilia-like beating of active microtubule bundles. Science 333:456–459CrossRef
48.
Zurück zum Zitat Sasaki R, Kabir AMR, Inoue D, Anan S, Kimura AP, Konagaya A, Sada K, Kakugo A (2018) Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach. Nanoscale 10:6323–6332CrossRef Sasaki R, Kabir AMR, Inoue D, Anan S, Kimura AP, Konagaya A, Sada K, Kakugo A (2018) Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach. Nanoscale 10:6323–6332CrossRef
49.
Zurück zum Zitat Cadart C, Zlotek-Zlotkiewicz E, Berre ML, Piel M, Matthews HK (2014) Exploring the function of cell shape and size during mitosis. Dev Cell 29:159–169CrossRef Cadart C, Zlotek-Zlotkiewicz E, Berre ML, Piel M, Matthews HK (2014) Exploring the function of cell shape and size during mitosis. Dev Cell 29:159–169CrossRef
50.
Zurück zum Zitat Islam MS, Kuribayashi-Shigetomi K, Kabir AMR, Inoue D, Sada K, Kakugo A (2017) Role of confinement in the active self-organization of kinesin-driven microtubules. Sensors Actuators B Chem 247:53–60CrossRef Islam MS, Kuribayashi-Shigetomi K, Kabir AMR, Inoue D, Sada K, Kakugo A (2017) Role of confinement in the active self-organization of kinesin-driven microtubules. Sensors Actuators B Chem 247:53–60CrossRef
51.
Zurück zum Zitat Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura SM (2017) Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci Robotics 2:eaal3735CrossRef Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura SM (2017) Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci Robotics 2:eaal3735CrossRef
52.
Zurück zum Zitat Tsuji M, Kabir AMR, Ito M, Inoue D, Kokado K, Sada K, Kakugo A (2017) Motility of microtubules on the inner surface of water-in-oil emulsion droplets. Langmuir 33:12108–12113CrossRef Tsuji M, Kabir AMR, Ito M, Inoue D, Kokado K, Sada K, Kakugo A (2017) Motility of microtubules on the inner surface of water-in-oil emulsion droplets. Langmuir 33:12108–12113CrossRef
53.
Zurück zum Zitat Goel A, Vogel V (2008) Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat Nanotechnol 3:465–475CrossRef Goel A, Vogel V (2008) Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat Nanotechnol 3:465–475CrossRef
54.
Zurück zum Zitat Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S (2014) Molecular robots with sensors and intelligence. Acc Chem Res 47:1681–1690CrossRef Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S (2014) Molecular robots with sensors and intelligence. Acc Chem Res 47:1681–1690CrossRef
55.
Zurück zum Zitat Hess H, Clemmens J, Howard J, Vogel V (2002) Surface imaging by self-propelled nanoscale probes. Nano Lett 2:113–116CrossRef Hess H, Clemmens J, Howard J, Vogel V (2002) Surface imaging by self-propelled nanoscale probes. Nano Lett 2:113–116CrossRef
56.
Zurück zum Zitat Hess H, Howard J, Vogel V (2002) A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett 2:1113–1115CrossRef Hess H, Howard J, Vogel V (2002) A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett 2:1113–1115CrossRef
57.
Zurück zum Zitat Inoue D, Nitta T, Kabir AMR, Sada K, Gong JP, Konagaya A, Kakugo A (2016) Sensing surface mechanical deformation using active probes driven by motor proteins. Nat Commun 7:12557CrossRef Inoue D, Nitta T, Kabir AMR, Sada K, Gong JP, Konagaya A, Kakugo A (2016) Sensing surface mechanical deformation using active probes driven by motor proteins. Nat Commun 7:12557CrossRef
58.
Zurück zum Zitat Kabir AMR, Inoue D, Kakugo A, Kamei A, Gong JP (2011) Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. Langmuir 27:13659–13668CrossRef Kabir AMR, Inoue D, Kakugo A, Kamei A, Gong JP (2011) Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. Langmuir 27:13659–13668CrossRef
59.
Zurück zum Zitat Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford/New York Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford/New York
60.
Zurück zum Zitat Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, Hess H, Kuzuya A, Kakugo A (2018) DNA-assisted swarm control in a biomolecular motor system. Nat Commun 9:453CrossRef Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, Hess H, Kuzuya A, Kakugo A (2018) DNA-assisted swarm control in a biomolecular motor system. Nat Commun 9:453CrossRef
61.
Zurück zum Zitat Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascade. Science 332:1196–1201CrossRef Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascade. Science 332:1196–1201CrossRef
62.
Zurück zum Zitat Wollman AJM, Sanchez-Cano C, Carstairs HMJ, Cross RA, Turberfield AJ (2014) Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nat Nanotechnol 9:44–47CrossRef Wollman AJM, Sanchez-Cano C, Carstairs HMJ, Cross RA, Turberfield AJ (2014) Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nat Nanotechnol 9:44–47CrossRef
63.
Zurück zum Zitat Hiyama S, Moritani Y, Gojo R, Takeuchi S, Sutoh K (2010) Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab Chip 10:2741–2748CrossRef Hiyama S, Moritani Y, Gojo R, Takeuchi S, Sutoh K (2010) Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab Chip 10:2741–2748CrossRef
64.
Zurück zum Zitat Früh SM, Steuerwald D, Simon U, Vogel V (2012) Covalent cargo loading to molecular shuttles via copper-free “click chemistry”. Biomacromolecules 13:3908–3911CrossRef Früh SM, Steuerwald D, Simon U, Vogel V (2012) Covalent cargo loading to molecular shuttles via copper-free “click chemistry”. Biomacromolecules 13:3908–3911CrossRef
65.
Zurück zum Zitat Keya JJ, Kabir AMR, Inoue D, Sada K, Hess H, Kuzuya A, Kakugo A (2018) Control of swarming of molecular robots. Sci Rep 8:11756CrossRef Keya JJ, Kabir AMR, Inoue D, Sada K, Hess H, Kuzuya A, Kakugo A (2018) Control of swarming of molecular robots. Sci Rep 8:11756CrossRef
Metadaten
Titel
Integration of Soft Actuators Based on a Biomolecular Motor System to Develop Artificial Machines
verfasst von
Jakia Jannat Keya
Kentaro Kayano
Arif Md. Rashedul Kabir
Akira Kakugo
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6850-9_39

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.