Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Intermolecular Interactions

verfasst von : Alston J. Misquitta

Erschienen in: Handbook of Computational Chemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Van der Waals interactions determine a number of phenomena in the fields of physics, chemistry and biology. As we seek to increase our understanding of physical systems and develop detailed and more predictive theoretical models, it becomes even more important to provide an accurate description of the underlying molecular interactions. The goal of this chapter is to describe recent developments in the theory of intermolecular interactions that have revolutionised the field due to their comparatively low computational costs and high accuracies. These are the symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) for interaction energies and the Williams–Stone–Misquitta (WSM) method for molecular properties in distributed form. These theories are applicable to systems of small organic molecules containing as many as 30 atoms each and have demonstrated accuracies comparable to the best electronic structure methods. We also discuss the numerical aspects of these theories and recent applications which demonstrate the range of problems that can now be approached with these accurate ab initio methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The pbe0 model. Journal of Chemical Physics, 110, 6158–6170. Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The pbe0 model. Journal of Chemical Physics, 110, 6158–6170.
Zurück zum Zitat Adamo, C., Cossi, M., Scalmani, G., & Barone, V. (1999). Accurate static polarizabilities by density functional theory: Assessment of the PBE0 model. Chemical Physics Letters, 307, 265–271. Adamo, C., Cossi, M., Scalmani, G., & Barone, V. (1999). Accurate static polarizabilities by density functional theory: Assessment of the PBE0 model. Chemical Physics Letters, 307, 265–271.
Zurück zum Zitat Akin-Ojo, O., Bukowski, R., & Szalewicz, K. (2003). Ab initio studies of He-HCCCN interaction. Journal of Chemical Physics, 119, 8379–8396. Akin-Ojo, O., Bukowski, R., & Szalewicz, K. (2003). Ab initio studies of He-HCCCN interaction. Journal of Chemical Physics, 119, 8379–8396.
Zurück zum Zitat Angyan, J. G. (2007). On the exchange-hole model of London dispersion forces. Journal of Chemical Physics, 127, 024108. Angyan, J. G. (2007). On the exchange-hole model of London dispersion forces. Journal of Chemical Physics, 127, 024108.
Zurück zum Zitat Angyan, J. G., Jansen, G., Loos, M., Hattig, C., & Hess, B. A. (1994). Distributed polarizabilities using the topological theory of atoms in molecules. Chemical Physics Letters, 219, 267–273. Angyan, J. G., Jansen, G., Loos, M., Hattig, C., & Hess, B. A. (1994). Distributed polarizabilities using the topological theory of atoms in molecules. Chemical Physics Letters, 219, 267–273.
Zurück zum Zitat Becke, A. D., & Johnson, E. R. (2005). Exchange-hole dipole moment and the dispersion interaction. Journal of Chemical Physics, 122, 154104. Becke, A. D., & Johnson, E. R. (2005). Exchange-hole dipole moment and the dispersion interaction. Journal of Chemical Physics, 122, 154104.
Zurück zum Zitat Bernal-Uruchurtu, M. I., Hernndez-Lamoneda, R., & Janda, K. C. (2009). On the unusual properties of halogen bonds: A detailed ab initio study of x2-(h2o)1-5 clusters (x = cl and br). Journal of Physical Chemistry A, 113, 5496–5505. Bernal-Uruchurtu, M. I., Hernndez-Lamoneda, R., & Janda, K. C. (2009). On the unusual properties of halogen bonds: A detailed ab initio study of x2-(h2o)1-5 clusters (x = cl and br). Journal of Physical Chemistry A, 113, 5496–5505.
Zurück zum Zitat Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Molecular Physics, 19, 553. Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Molecular Physics, 19, 553.
Zurück zum Zitat Buckingham, A. D., & Fowler, P. W. (1983). Do electrostatic interactions predict structures of van der Waals molecules? Journal of Chemical Physics, 79, 6426–6428. Buckingham, A. D., & Fowler, P. W. (1983). Do electrostatic interactions predict structures of van der Waals molecules? Journal of Chemical Physics, 79, 6426–6428.
Zurück zum Zitat Buckingham, A. D., Bene, J. E. D., & McDowell, S. A. C. (2008). The hydrogen bond. Chemical Physics Letters, 463, 1–10. Buckingham, A. D., Bene, J. E. D., & McDowell, S. A. C. (2008). The hydrogen bond. Chemical Physics Letters, 463, 1–10.
Zurück zum Zitat Bukowski, R., & Szalewicz, K. (2001). Complete ab initio three-body nonadditive potential in monte carlo simulations of vapor-liquid equilibria and pure phases of argon. Journal of Chemical Physics, 114, 9518. Bukowski, R., & Szalewicz, K. (2001). Complete ab initio three-body nonadditive potential in monte carlo simulations of vapor-liquid equilibria and pure phases of argon. Journal of Chemical Physics, 114, 9518.
Zurück zum Zitat Bukowski, R., Sadlej, J., Jeziorski, B., Jankowski, P., Szalewicz, K., Kucharski, S. A., Williams, H. L., & Rice, B. M. (1999). Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory. Journal of Chemical Physics, 110, 3785–3803. Bukowski, R., Sadlej, J., Jeziorski, B., Jankowski, P., Szalewicz, K., Kucharski, S. A., Williams, H. L., & Rice, B. M. (1999). Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory. Journal of Chemical Physics, 110, 3785–3803.
Zurück zum Zitat Bukowski, R., Cencek, W., Jankowski, P., Jeziorski, B., Jeziorska, M., Lotrich, V., Kucharski, S., Misquitta, A. J., Moszynski, R., Patkowski, K., Podeszwa, R., Rybak, S., Szalewicz, K., Williams, H., Wheatley, R. J., Wormer, P. E. S., & Zuchowski, P. S. (2002). SAPT2008: An ab initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies. University of Delaware and University of Warsaw. http://www.physics.udel.edu/~szalewic/. Accessed 18 July 2011. Bukowski, R., Cencek, W., Jankowski, P., Jeziorski, B., Jeziorska, M., Lotrich, V., Kucharski, S., Misquitta, A. J., Moszynski, R., Patkowski, K., Podeszwa, R., Rybak, S., Szalewicz, K., Williams, H., Wheatley, R. J., Wormer, P. E. S., & Zuchowski, P. S. (2002). SAPT2008: An ab initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies. University of Delaware and University of Warsaw. http://​www.​physics.​udel.​edu/​~szalewic/​. Accessed 18 July 2011.
Zurück zum Zitat Bukowski, R., Podeszwa, R., & Szalewicz, K. (2005). Efficient generation of the coupled Kohn–Sham dynamic sysceptibility functions and dispersion energy with density fitting. Chemical Physics Letters, 414, 111–116. Bukowski, R., Podeszwa, R., & Szalewicz, K. (2005). Efficient generation of the coupled Kohn–Sham dynamic sysceptibility functions and dispersion energy with density fitting. Chemical Physics Letters, 414, 111–116.
Zurück zum Zitat Bukowski, R., Szalewicz, K., Groenenboom, G., & van der Avoird, A. (2006). Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers. Journal of Chemical Physics, 125, 044301. Bukowski, R., Szalewicz, K., Groenenboom, G., & van der Avoird, A. (2006). Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers. Journal of Chemical Physics, 125, 044301.
Zurück zum Zitat Bukowski, R., Szalewicz, K., Groenenboom, G. C., & van der Avoird, A. (2007). Predictions of the properties of water from first principles. Science, 315, 1249–1252. Bukowski, R., Szalewicz, K., Groenenboom, G. C., & van der Avoird, A. (2007). Predictions of the properties of water from first principles. Science, 315, 1249–1252.
Zurück zum Zitat Burcl, R., Chalasinski, G., Bukowski, R., & Szczesniak, M. M. (1995). On the role of bond functions in interaction energy calculations: Ar⋯HCl, Ar⋯H2O, (HF)2. Journal of Chemical Physics, 103, 1498–1507. Burcl, R., Chalasinski, G., Bukowski, R., & Szczesniak, M. M. (1995). On the role of bond functions in interaction energy calculations: Ar⋯HCl, Ar⋯H2O, (HF)2. Journal of Chemical Physics, 103, 1498–1507.
Zurück zum Zitat Casida, M. E. (1995). Time-dependent density-functional response theory for molecules. In D. P. Chong (Ed.), Recent advances in density-functional theory (p. 155). Singapore: World Scientific. Casida, M. E. (1995). Time-dependent density-functional response theory for molecules. In D. P. Chong (Ed.), Recent advances in density-functional theory (p. 155). Singapore: World Scientific.
Zurück zum Zitat Chalasinski, G., & Szczesniak, M. M. (2000). State of the art and challenges of the ab initio theory of intermolecular interactions. Chemical Reviews, 100, 4227–4252. Chalasinski, G., & Szczesniak, M. M. (2000). State of the art and challenges of the ab initio theory of intermolecular interactions. Chemical Reviews, 100, 4227–4252.
Zurück zum Zitat Chang, B., Akin-Ojo, O., Bukowski, R., & Szalewicz, K. (2003). Potential energy surface and rovibrational spectrum of He-N2O dimer. Journal of Chemical Physics, 119, 11654. Chang, B., Akin-Ojo, O., Bukowski, R., & Szalewicz, K. (2003). Potential energy surface and rovibrational spectrum of He-N2O dimer. Journal of Chemical Physics, 119, 11654.
Zurück zum Zitat Colwell, S. M., Handy, N. C., & Lee, A. M. (1995). Determination of frequency-dependent polarizabilities using current density-functional theory. Physical Review A, 53, 1316–1322. Colwell, S. M., Handy, N. C., & Lee, A. M. (1995). Determination of frequency-dependent polarizabilities using current density-functional theory. Physical Review A, 53, 1316–1322.
Zurück zum Zitat Day, G. M., & Price, S. L. (2003). A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals. Journal of the American Chemical Society, 125, 16434–16443. Day, G. M., & Price, S. L. (2003). A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals. Journal of the American Chemical Society, 125, 16434–16443.
Zurück zum Zitat Day, G. M., Motherwell, W. D. S., & Jones, W. (2005). Beyond the isotropic atom model in crystal structure prediction of rigid molecules: Atomic multipoles versus point charges. Crystal Growth and Design, 5, 1023–1033. Day, G. M., Motherwell, W. D. S., & Jones, W. (2005). Beyond the isotropic atom model in crystal structure prediction of rigid molecules: Atomic multipoles versus point charges. Crystal Growth and Design, 5, 1023–1033.
Zurück zum Zitat Day, G. M., Cooper, T. G., Cabeza, A. J. C., Hejczyk, K., Ammon, H. L., Boerrigter, S. X. M., Tan, J., Valle, R. G. D., Venuti, E., Jose, J., Gadre, S. R., Desiraju, G. R., Thakur, T. S., van Eijck, B. P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Gavezzotti, A., Hofmann, D. W. M., Neumann, M., Leusen, F. J. J., Price, J. K. S. L., Misquitta, A. J., Karamertzanis, P. G., Welch, G., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U., van de Streek, J., Wolf, A., & Schweizer, B. (2009). Significant progress in predicting the crystal structures of small organic molecules – A report on the fourth blind test. Acta Crystallographica. Section B, 65, 107–125. Day, G. M., Cooper, T. G., Cabeza, A. J. C., Hejczyk, K., Ammon, H. L., Boerrigter, S. X. M., Tan, J., Valle, R. G. D., Venuti, E., Jose, J., Gadre, S. R., Desiraju, G. R., Thakur, T. S., van Eijck, B. P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Gavezzotti, A., Hofmann, D. W. M., Neumann, M., Leusen, F. J. J., Price, J. K. S. L., Misquitta, A. J., Karamertzanis, P. G., Welch, G., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U., van de Streek, J., Wolf, A., & Schweizer, B. (2009). Significant progress in predicting the crystal structures of small organic molecules – A report on the fourth blind test. Acta Crystallographica. Section B, 65, 107–125.
Zurück zum Zitat Dion, M., Rydberg, H., Schroder, E., Langreth, D. C., & Lundqvist, B. I. (2004). Van der Waals density functional for general geometries. Physical Review Letters, 92, 246401–246404. Dion, M., Rydberg, H., Schroder, E., Langreth, D. C., & Lundqvist, B. I. (2004). Van der Waals density functional for general geometries. Physical Review Letters, 92, 246401–246404.
Zurück zum Zitat Dunlap, B. I. (2000). Robust and variational fitting. Physical Chemistry Chemical Physics, 2, 2113–2116. Dunlap, B. I. (2000). Robust and variational fitting. Physical Chemistry Chemical Physics, 2, 2113–2116.
Zurück zum Zitat Dunlap, B. I., Connolly, J. W. D., & Sabin, J. R. (1979). On first-row diatomic molecules and local density models. Journal of Chemical Physics, 71, 4993–4999. Dunlap, B. I., Connolly, J. W. D., & Sabin, J. R. (1979). On first-row diatomic molecules and local density models. Journal of Chemical Physics, 71, 4993–4999.
Zurück zum Zitat Ernesti, A., & Hutson, J. M. (1997). Non-additive intermolecular forces from the spectroscopy of van der Waals trimers: A comparison of ar2-hf and ar2-hcl, including h/d isotope effects. Journal of Chemical Physics, 106, 6288. Ernesti, A., & Hutson, J. M. (1997). Non-additive intermolecular forces from the spectroscopy of van der Waals trimers: A comparison of ar2-hf and ar2-hcl, including h/d isotope effects. Journal of Chemical Physics, 106, 6288.
Zurück zum Zitat Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the perdew–burke–ernzerhof exchange-correlation functional. Journal of Chemical Physics, 110, 5029–5036. Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the perdew–burke–ernzerhof exchange-correlation functional. Journal of Chemical Physics, 110, 5029–5036.
Zurück zum Zitat Fiethen, A., Jansen, G., Hesselmann, A., & Schutz, M. (2008). Stacking energies for average b-dna structures from the combined density functional theory and symmetry-adapted perturbation theory approach. Journal of the American Chemical Society, 130, 1802–1803. Fiethen, A., Jansen, G., Hesselmann, A., & Schutz, M. (2008). Stacking energies for average b-dna structures from the combined density functional theory and symmetry-adapted perturbation theory approach. Journal of the American Chemical Society, 130, 1802–1803.
Zurück zum Zitat Gagliardi, L., Lindh, R., & Karlstrom, G. (2004). Local properties of quantum systems: The loprop approach. Journal of Chemical Physics, 121, 4494. Gagliardi, L., Lindh, R., & Karlstrom, G. (2004). Local properties of quantum systems: The loprop approach. Journal of Chemical Physics, 121, 4494.
Zurück zum Zitat Grabo, T., Petersilka, M., & Gross, E. K. U. (2000). Molecular excitation energies from time-dependent density functional theory. Journal of Molecular Structure (Theochem), 501, 353. Grabo, T., Petersilka, M., & Gross, E. K. U. (2000). Molecular excitation energies from time-dependent density functional theory. Journal of Molecular Structure (Theochem), 501, 353.
Zurück zum Zitat Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25, 1463–1473. Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25, 1463–1473.
Zurück zum Zitat Helgaker, T., Klopper, W., Koch, H., & Noga, J. (1997). Basis set convergence of correlated calculations on water. Journal of Chemical Physics, 106, 9639–9646. Helgaker, T., Klopper, W., Koch, H., & Noga, J. (1997). Basis set convergence of correlated calculations on water. Journal of Chemical Physics, 106, 9639–9646.
Zurück zum Zitat Helgaker, T., Jensen, H. J. A., Joergensen, P., Olsen, J., Ruud, K., Aagren, H., Auer, A., Bak, K., Bakken, V., Christiansen, O., Coriani, S., Dahle, P., Dalskov, E. K., Enevoldsen, T., Fernandez, B., Haettig, C., Hald, K., Halkier, A., Heiberg, H., Hettema, H., Jonsson, D., Kirpekar, S., Kobayashi, R., Koch, H., Mikkelsen, K. V., Norman, P., Packer, M. J., Pedersen, T. B., Ruden, T. A., Sanchez, A., Saue, T., Sauer, S. P. A., Schimmelpfennig, B., Sylvester-Hvid, K. O., Taylor, P. R., & Vahtras, O. (2005). Dalton, a molecular electronic structure program, release 2.0. See http://www.kjemi.uio.no/software/dalton/dalton.html. Accessed 18 July 2011. Helgaker, T., Jensen, H. J. A., Joergensen, P., Olsen, J., Ruud, K., Aagren, H., Auer, A., Bak, K., Bakken, V., Christiansen, O., Coriani, S., Dahle, P., Dalskov, E. K., Enevoldsen, T., Fernandez, B., Haettig, C., Hald, K., Halkier, A., Heiberg, H., Hettema, H., Jonsson, D., Kirpekar, S., Kobayashi, R., Koch, H., Mikkelsen, K. V., Norman, P., Packer, M. J., Pedersen, T. B., Ruden, T. A., Sanchez, A., Saue, T., Sauer, S. P. A., Schimmelpfennig, B., Sylvester-Hvid, K. O., Taylor, P. R., & Vahtras, O. (2005). Dalton, a molecular electronic structure program, release 2.0. See http://​www.​kjemi.​uio.​no/​software/​dalton/​dalton.​html. Accessed 18 July 2011.
Zurück zum Zitat Hesselmann, A. (2009). Derivation of the dispersion energy as an explicit density- and exchange-hole functional. Journal of Chemical Physics, 130, 084104–084105. Hesselmann, A. (2009). Derivation of the dispersion energy as an explicit density- and exchange-hole functional. Journal of Chemical Physics, 130, 084104–084105.
Zurück zum Zitat Hesselmann, A., & Jansen, G. (2002a). First-order intermolecular interaction energies from Kohn–Sham orbitals. Chemical Physics Letters, 357, 464–470. Hesselmann, A., & Jansen, G. (2002a). First-order intermolecular interaction energies from Kohn–Sham orbitals. Chemical Physics Letters, 357, 464–470.
Zurück zum Zitat Hesselmann, A., & Jansen, G. (2002b). Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory. Chemical Physics Letters, 362, 319–325. Hesselmann, A., & Jansen, G. (2002b). Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory. Chemical Physics Letters, 362, 319–325.
Zurück zum Zitat Hesselmann, A., & Jansen, G. (2003a). The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange-correlation potential. Physical Chemistry Chemical Physics, 5, 5010. Hesselmann, A., & Jansen, G. (2003a). The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange-correlation potential. Physical Chemistry Chemical Physics, 5, 5010.
Zurück zum Zitat Hesselmann, A., & Jansen, G. (2003b). Intermolecular dispersion energies from time-dependent density functional theory. Chemical Physics Letters, 367, 778–784. Hesselmann, A., & Jansen, G. (2003b). Intermolecular dispersion energies from time-dependent density functional theory. Chemical Physics Letters, 367, 778–784.
Zurück zum Zitat Hesselmann, A., Jansen, G., & Schutz, M. (2005). Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. Journal of Chemical Physics, 122, 014103. Hesselmann, A., Jansen, G., & Schutz, M. (2005). Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. Journal of Chemical Physics, 122, 014103.
Zurück zum Zitat Hesselmann, A., Jansen, G., & Schutz, M. (2006). Interaction energy contributions of h-bonded and stacked structures of the at and gc dna base pairs from the combined density functional theory and intermolecular perturbation theory approach. Journal of the American Chemical Society, 128, 11730–11731. Hesselmann, A., Jansen, G., & Schutz, M. (2006). Interaction energy contributions of h-bonded and stacked structures of the at and gc dna base pairs from the combined density functional theory and intermolecular perturbation theory approach. Journal of the American Chemical Society, 128, 11730–11731.
Zurück zum Zitat Hobza, P., & Sponer, J. (2002). Toward true dna base-stacking energies: Mp2, ccsd(t), and complete basis set calculations. Journal of the American Chemical Society, 124, 11802. Hobza, P., & Sponer, J. (2002). Toward true dna base-stacking energies: Mp2, ccsd(t), and complete basis set calculations. Journal of the American Chemical Society, 124, 11802.
Zurück zum Zitat Hodges, M. P., Stone, A. J., & Xantheas, S. S. (1997). Contribution of many-body terms to the energy for small water clusters: A comparison of ab initio calculations and accurate model potentials. Journal of Physical Chemistry A, 101, 9163–9168. Hodges, M. P., Stone, A. J., & Xantheas, S. S. (1997). Contribution of many-body terms to the energy for small water clusters: A comparison of ab initio calculations and accurate model potentials. Journal of Physical Chemistry A, 101, 9163–9168.
Zurück zum Zitat Ioannou, A. G., Colwell, S. M., & Amos, R. D. (1997). The calculation of frequency-dependent polarizabilities using current density functional theory. Chemical Physics Letters, 278, 278–284. Ioannou, A. G., Colwell, S. M., & Amos, R. D. (1997). The calculation of frequency-dependent polarizabilities using current density functional theory. Chemical Physics Letters, 278, 278–284.
Zurück zum Zitat Israelachvili, J. N. (2007). Intermolecular and surface forces (2nd ed.). Amsterdam: Academic. Israelachvili, J. N. (2007). Intermolecular and surface forces (2nd ed.). Amsterdam: Academic.
Zurück zum Zitat Jankowski, P. (2004). Approximate generation of full-dimensional ab initio van der Waals surfaces for high-resolution spectroscopy. Journal of Chemical Physics, 121, 1655–1662. Jankowski, P. (2004). Approximate generation of full-dimensional ab initio van der Waals surfaces for high-resolution spectroscopy. Journal of Chemical Physics, 121, 1655–1662.
Zurück zum Zitat Jankowski, P. (2008). Exploring the new three-dimensional ab initio interaction energy surface of the Ar-HF complex: Rovibrational calculations for Ar-HF and Ar-DF with vibrationally excited diatoms. Journal of Chemical Physics, 128, 154311. Jankowski, P. (2008). Exploring the new three-dimensional ab initio interaction energy surface of the Ar-HF complex: Rovibrational calculations for Ar-HF and Ar-DF with vibrationally excited diatoms. Journal of Chemical Physics, 128, 154311.
Zurück zum Zitat Jankowski, P., & Ziolkowski, M. (2006). Fitting the derivative surfaces for full-dimensional interaction potentials. Molecular Physics, 104, 2293–2302. Jankowski, P., & Ziolkowski, M. (2006). Fitting the derivative surfaces for full-dimensional interaction potentials. Molecular Physics, 104, 2293–2302.
Zurück zum Zitat Jenness, G. R., & Jordan, K. D. (2009). Df-dft-sapt investigation of the interaction of a water molecule to coronene and dodecabenzocoronene: Implications for the water-graphite interaction. The Journal of Physical Chemistry, 113, 10242–10248. Jenness, G. R., & Jordan, K. D. (2009). Df-dft-sapt investigation of the interaction of a water molecule to coronene and dodecabenzocoronene: Implications for the water-graphite interaction. The Journal of Physical Chemistry, 113, 10242–10248.
Zurück zum Zitat Jeziorska, M., Jeziorski, B., & Cizek, J. (1987). Direct calculation of the hartree-fock interaction energy via exchange-perturbation expansion. The He …He interaction. International Journal of Quantum Chemistry, 32, 149–164. Jeziorska, M., Jeziorski, B., & Cizek, J. (1987). Direct calculation of the hartree-fock interaction energy via exchange-perturbation expansion. The He …He interaction. International Journal of Quantum Chemistry, 32, 149–164.
Zurück zum Zitat Jeziorski, B., & Szalewicz, K. (1998). Encyclopedia of computational chemistry (Vol. 2, p. 1376). Chichester: Wiley. Jeziorski, B., & Szalewicz, K. (1998). Encyclopedia of computational chemistry (Vol. 2, p. 1376). Chichester: Wiley.
Zurück zum Zitat Jeziorski, B., & Szalewicz, K. (2002). Symmetry-adapted perturbation theory. In S. Wilson (Ed.), Handbook of molecular physics and quantum chemistry (Vol. 8, pp. 37–83). Chichester: Wiley. Chap. 8. Jeziorski, B., & Szalewicz, K. (2002). Symmetry-adapted perturbation theory. In S. Wilson (Ed.), Handbook of molecular physics and quantum chemistry (Vol. 8, pp. 37–83). Chichester: Wiley. Chap. 8.
Zurück zum Zitat Jeziorski, B., Moszynski, R., & Szalewicz, K. (1994). Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 94, 1887–1930. Jeziorski, B., Moszynski, R., & Szalewicz, K. (1994). Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 94, 1887–1930.
Zurück zum Zitat Karamertzanis, P. G., Day, G. M., Welch, G. W. A., Kendrick, J., Leusen, F. J. J., Neumann, M. A., & Price, S. L. (2008). Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs. Journal of Chemical Physics, 128, 244708–244717. Karamertzanis, P. G., Day, G. M., Welch, G. W. A., Kendrick, J., Leusen, F. J. J., Neumann, M. A., & Price, S. L. (2008). Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs. Journal of Chemical Physics, 128, 244708–244717.
Zurück zum Zitat Kendall, R. A., Dunning, T. H., & Harrison, R. J. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics, 96, 6796–6806. Kendall, R. A., Dunning, T. H., & Harrison, R. J. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics, 96, 6796–6806.
Zurück zum Zitat Koch, W. (2000). A chemist’s guide to density functional theory. Weinheim/Chichester: Wiley. Koch, W. (2000). A chemist’s guide to density functional theory. Weinheim/Chichester: Wiley.
Zurück zum Zitat Le Sueur, C. R., & Stone, A. J. (1993). Practical schemes for distributed polarizabilities. Molecular Physics, 78, 1267–1291. Le Sueur, C. R., & Stone, A. J. (1993). Practical schemes for distributed polarizabilities. Molecular Physics, 78, 1267–1291.
Zurück zum Zitat Le Sueur, C. R., & Stone, A. J. (1994). Localization methods for distributed polarizabilities. Molecular Physics, 83, 293–308. Le Sueur, C. R., & Stone, A. J. (1994). Localization methods for distributed polarizabilities. Molecular Physics, 83, 293–308.
Zurück zum Zitat Lehninger, A. L. (1970). Biochemistry. New York: Worth Publishers. Lehninger, A. L. (1970). Biochemistry. New York: Worth Publishers.
Zurück zum Zitat Lillestolen, T. C., & Wheatley, R. J. (2007). First-principles calculation of local atomic polarizabilities. Journal of Physical Chemistry A, 111, 11141–11146. Lillestolen, T. C., & Wheatley, R. J. (2007). First-principles calculation of local atomic polarizabilities. Journal of Physical Chemistry A, 111, 11141–11146.
Zurück zum Zitat Lillestolen, T. C., & Wheatley, R. J. (2008). Redefining the atom: Atomic charge densities produced by an iterative stockholder approach. Chemical Communications, 5909–5911. Lillestolen, T. C., & Wheatley, R. J. (2008). Redefining the atom: Atomic charge densities produced by an iterative stockholder approach. Chemical Communications, 5909–5911.
Zurück zum Zitat Longuet-Higgins, H. C. (1965). Intermolecular forces. Discussions of the Faraday Society, 40, 7. Longuet-Higgins, H. C. (1965). Intermolecular forces. Discussions of the Faraday Society, 40, 7.
Zurück zum Zitat Maddox, J. (1988). Crystals from first principles. Nature, 335, 201. Maddox, J. (1988). Crystals from first principles. Nature, 335, 201.
Zurück zum Zitat Magnasco, V., & McWeeny, R. (1991). Weak interaction between molecules and their physical interpretations. In Z. B. Maksić (Ed.), Theoretical models of chemical bonding (Vol. 4, pp. 133–169). New York: Springer. Magnasco, V., & McWeeny, R. (1991). Weak interaction between molecules and their physical interpretations. In Z. B. Maksić (Ed.), Theoretical models of chemical bonding (Vol. 4, pp. 133–169). New York: Springer.
Zurück zum Zitat Mas, E. M., Szalewicz, K., Bukowski, R., & Jeziorski, B. (1997). Pair potential for water from symmetry-adapted perturbation theory. Journal of Chemical Physics, 107, 4207–4218. Mas, E. M., Szalewicz, K., Bukowski, R., & Jeziorski, B. (1997). Pair potential for water from symmetry-adapted perturbation theory. Journal of Chemical Physics, 107, 4207–4218.
Zurück zum Zitat Mas, E. M., Bukowski, R., & Szalewicz, K. (2003a). Ab initio three-body interactions for water. I. Potential and structure of water trimer. Journal of Chemical Physics, 118, 4386–4403. Mas, E. M., Bukowski, R., & Szalewicz, K. (2003a). Ab initio three-body interactions for water. I. Potential and structure of water trimer. Journal of Chemical Physics, 118, 4386–4403.
Zurück zum Zitat Mas, E. M., Bukowski, R., & Szalewicz, K. (2003b). Ab initio three-body interactions for water. II. Effects on structure and energetics of liquid. Journal of Chemical Physics, 118, 4404–4413. Mas, E. M., Bukowski, R., & Szalewicz, K. (2003b). Ab initio three-body interactions for water. II. Effects on structure and energetics of liquid. Journal of Chemical Physics, 118, 4404–4413.
Zurück zum Zitat Matta, C. F., & Bader, R. F. W. (2006). An experimentalist’s reply to “what is an atom in a molecule?”. Journal of Physical Chemistry A, 110, 6365–6371. Matta, C. F., & Bader, R. F. W. (2006). An experimentalist’s reply to “what is an atom in a molecule?”. Journal of Physical Chemistry A, 110, 6365–6371.
Zurück zum Zitat Milet, A., Moszynski, R., Wormer, P. E. S., & van der Avoird, A. (1999). Hydrogen bonding in water clusters: Pair and many-body interactions from symmetry-adapted perturbation theory. Journal of Physical Chemistry A, 103, 6811–6819. Milet, A., Moszynski, R., Wormer, P. E. S., & van der Avoird, A. (1999). Hydrogen bonding in water clusters: Pair and many-body interactions from symmetry-adapted perturbation theory. Journal of Physical Chemistry A, 103, 6811–6819.
Zurück zum Zitat Misquitta, A. J., & Stone, A. J. (2006). Distributed polarizabilities obtained using a constrained density-fitting algorithm. Journal of Chemical Physics, 124, 024111. Misquitta, A. J., & Stone, A. J. (2006). Distributed polarizabilities obtained using a constrained density-fitting algorithm. Journal of Chemical Physics, 124, 024111.
Zurück zum Zitat Misquitta, A. J., & Stone, A. J. (2008a). Accurate induction energies for small organic molecules: I. Theory. Journal of Chemical Theory and Computation, 4, 7–18. Misquitta, A. J., & Stone, A. J. (2008a). Accurate induction energies for small organic molecules: I. Theory. Journal of Chemical Theory and Computation, 4, 7–18.
Zurück zum Zitat Misquitta, A. J., & Stone, A. J. (2008b). Dispersion energies for small organic molecules: First row atoms. Molecular Physics, 106, 1631–1643. Misquitta, A. J., & Stone, A. J. (2008b). Dispersion energies for small organic molecules: First row atoms. Molecular Physics, 106, 1631–1643.
Zurück zum Zitat Misquitta, A. J., & Szalewicz, K. (2002). Intermolecular forces from asymptotically corrected density functional description of monomers. Chemical Physics Letters, 357, 301–306. Misquitta, A. J., & Szalewicz, K. (2002). Intermolecular forces from asymptotically corrected density functional description of monomers. Chemical Physics Letters, 357, 301–306.
Zurück zum Zitat Misquitta, A. J., & Szalewicz, K. (2005). Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. Journal of Chemical Physics, 122, 214109. Misquitta, A. J., & Szalewicz, K. (2005). Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. Journal of Chemical Physics, 122, 214109.
Zurück zum Zitat Misquitta, A. J., Bukowski, R., & Szalewicz, K. (2000). Spectra of Ar-CO2 from ab initio potential energy surfaces. Journal of Chemical Physics, 112, 5308–5319. Misquitta, A. J., Bukowski, R., & Szalewicz, K. (2000). Spectra of Ar-CO2 from ab initio potential energy surfaces. Journal of Chemical Physics, 112, 5308–5319.
Zurück zum Zitat Misquitta, A. J., Jeziorski, B., & Szalewicz, K. (2003). Dispersion energy from density-functional theory description of monomers. Physical Review Letters, 91, 33201. Misquitta, A. J., Jeziorski, B., & Szalewicz, K. (2003). Dispersion energy from density-functional theory description of monomers. Physical Review Letters, 91, 33201.
Zurück zum Zitat Misquitta, A., Podeszwa, R., Jeziorski, B., & Szalewicz, K. (2005a). Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. Journal of Chemical Physics, 123, 214103. Misquitta, A., Podeszwa, R., Jeziorski, B., & Szalewicz, K. (2005a). Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. Journal of Chemical Physics, 123, 214103.
Zurück zum Zitat Misquitta, A. J., Podeszwa, R., Jeziorski, B., & Szalewicz, K. (2005b). Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional theory. Journal of Chemical Physics, 123, 214103. Misquitta, A. J., Podeszwa, R., Jeziorski, B., & Szalewicz, K. (2005b). Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional theory. Journal of Chemical Physics, 123, 214103.
Zurück zum Zitat Misquitta, A. J., Stone, A. J., & Price, S. L. (2008a). Accurate induction energies for small organic molecules: II. Models and numerical details. Journal of Chemical Theory and Computation, 4, 19–32. Misquitta, A. J., Stone, A. J., & Price, S. L. (2008a). Accurate induction energies for small organic molecules: II. Models and numerical details. Journal of Chemical Theory and Computation, 4, 19–32.
Zurück zum Zitat Misquitta, A. J., Welch, G. W. A., Stone, A. J., & Price, S. L. (2008b). A first principles prediction of the crystal structure of C6 Br2 ClFH2. Chemical Physics Letters, 456, 105–109. Misquitta, A. J., Welch, G. W. A., Stone, A. J., & Price, S. L. (2008b). A first principles prediction of the crystal structure of C6 Br2 ClFH2. Chemical Physics Letters, 456, 105–109.
Zurück zum Zitat Misquitta, A. J., Spencer, J., Stone, A. J., & Alavi, A. (2010). Dispersion interactions between semiconducting wires. Physical Review B, 82, 075312–075317. Misquitta, A. J., Spencer, J., Stone, A. J., & Alavi, A. (2010). Dispersion interactions between semiconducting wires. Physical Review B, 82, 075312–075317.
Zurück zum Zitat Moszyński, R., Jeziorski, B., Rybak, S., Szalewicz, K., & Williams, H. L. (1994). Many-body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He-F-, He-HF, H2-HF, and Ar-H2 dimers. Journal of Chemical Physics, 100, 5080–5092. Moszyński, R., Jeziorski, B., Rybak, S., Szalewicz, K., & Williams, H. L. (1994). Many-body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He-F-, He-HF, H2-HF, and Ar-H2 dimers. Journal of Chemical Physics, 100, 5080–5092.
Zurück zum Zitat Moszynski, R., Heijmen, T. G. A., & Jeziorski, B. (1996). Symmetry-adapted perturbation theory for the calculation of hartree-fock interaction energies. Molecular Physics, 88, 741–758. Moszynski, R., Heijmen, T. G. A., & Jeziorski, B. (1996). Symmetry-adapted perturbation theory for the calculation of hartree-fock interaction energies. Molecular Physics, 88, 741–758.
Zurück zum Zitat Murdachaew, G., Misquitta, A. J., Bukowski, R., & Szalewicz, K. (2001). Intermolecular potential energy surfaces and spectra of Ne-HCN complex from ab initio calculations. Journal of Chemical Physics, 114, 764. Murdachaew, G., Misquitta, A. J., Bukowski, R., & Szalewicz, K. (2001). Intermolecular potential energy surfaces and spectra of Ne-HCN complex from ab initio calculations. Journal of Chemical Physics, 114, 764.
Zurück zum Zitat Murdachaew, G., Szalewicz, K., & Bukowski, R. (2002). Efficient generation of flexible-monomer intermolecular potential energy surfaces. Physical Review Letters, 88, 12320. Murdachaew, G., Szalewicz, K., & Bukowski, R. (2002). Efficient generation of flexible-monomer intermolecular potential energy surfaces. Physical Review Letters, 88, 12320.
Zurück zum Zitat Neumann, M. A., & Perrin, M.-A. (2005). Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction. Journal of Physical Chemistry B, 109, 15531–15541. Neumann, M. A., & Perrin, M.-A. (2005). Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction. Journal of Physical Chemistry B, 109, 15531–15541.
Zurück zum Zitat Onida, G., Reinig, L., & Rubio, A. (2002). Electronic excitations: Density-functional versus many-body greens-function approaches. Reviews of Modern Physics, 74, 601. Onida, G., Reinig, L., & Rubio, A. (2002). Electronic excitations: Density-functional versus many-body greens-function approaches. Reviews of Modern Physics, 74, 601.
Zurück zum Zitat Parr, R. G., Ayers, P. W., & Nalewajski, R. F. (2005). What is an atom in a molecule? Journal of Physical Chemistry A, 109, 3957–3959. Parr, R. G., Ayers, P. W., & Nalewajski, R. F. (2005). What is an atom in a molecule? Journal of Physical Chemistry A, 109, 3957–3959.
Zurück zum Zitat Parsegian, V. A. (2005). Van der Waals forces: A handbook for biologists, chemists, engineers, and physicists. Cambridge: Cambridge University Press. Parsegian, V. A. (2005). Van der Waals forces: A handbook for biologists, chemists, engineers, and physicists. Cambridge: Cambridge University Press.
Zurück zum Zitat Patkowski, K., Szalewicz, K., & Jeziorski, B. (2006). Third-order interactions in symmetry-adapted perturbation theory. Journal of Chemical Physics, 125, 154107. Patkowski, K., Szalewicz, K., & Jeziorski, B. (2006). Third-order interactions in symmetry-adapted perturbation theory. Journal of Chemical Physics, 125, 154107.
Zurück zum Zitat Pernal, K., Podeszwa, R., Patkowski, K., & Szalewicz, K. (2009). Dispersionless density functional theory. Physical Review Letters, 103, 263201(4). Pernal, K., Podeszwa, R., Patkowski, K., & Szalewicz, K. (2009). Dispersionless density functional theory. Physical Review Letters, 103, 263201(4).
Zurück zum Zitat Petersilka, M., Gossmann, U. J., & Gross, E. K. U. (1996). Excitation energies from time-dependent density-functional theory. Physical Review Letters, 76, 1212–1215. Petersilka, M., Gossmann, U. J., & Gross, E. K. U. (1996). Excitation energies from time-dependent density-functional theory. Physical Review Letters, 76, 1212–1215.
Zurück zum Zitat Peterson, K. A., & McBane, G. C. (2005). A hierarchical family of three-dimensional potential energy surfaces for He-CO. Journal of Chemical Physics, 123, 084314–084315. Peterson, K. A., & McBane, G. C. (2005). A hierarchical family of three-dimensional potential energy surfaces for He-CO. Journal of Chemical Physics, 123, 084314–084315.
Zurück zum Zitat Pitonak, M., & Hesselmann, A. (2010). Accurate intermolecular interaction energies from a combination of mp2 and tddft response theory. Journal of Chemical Theory and Computation, 6, 168–178. Pitonak, M., & Hesselmann, A. (2010). Accurate intermolecular interaction energies from a combination of mp2 and tddft response theory. Journal of Chemical Theory and Computation, 6, 168–178.
Zurück zum Zitat Podeszwa, R., & Szalewicz, K. (2005). Accurate interaction energies for argon, krypton, and benzene dimers from perturbation theory based on the Kohn–Sham model. Chemical Physics Letters, 412, 488. Podeszwa, R., & Szalewicz, K. (2005). Accurate interaction energies for argon, krypton, and benzene dimers from perturbation theory based on the Kohn–Sham model. Chemical Physics Letters, 412, 488.
Zurück zum Zitat Podeszwa, R., & Szalewicz, K. (2007). Three-body symmetry-adapted perturbation theory based on Kohn–Sham description of the monomers. Journal of Chemical Physics, 126, 194101. Podeszwa, R., & Szalewicz, K. (2007). Three-body symmetry-adapted perturbation theory based on Kohn–Sham description of the monomers. Journal of Chemical Physics, 126, 194101.
Zurück zum Zitat Podeszwa, R., & Szalewicz, K. (2008). Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 10, 2735–2746. Podeszwa, R., & Szalewicz, K. (2008). Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 10, 2735–2746.
Zurück zum Zitat Podeszwa, P., Bukowski, R., & Szalewicz, K. (2006a). Potential energy surface for the benzene dimer and perturbational analysis of π – π interactions. Journal of Physical Chemistry A, 110, 10345–10354. Podeszwa, P., Bukowski, R., & Szalewicz, K. (2006a). Potential energy surface for the benzene dimer and perturbational analysis of ππ interactions. Journal of Physical Chemistry A, 110, 10345–10354.
Zurück zum Zitat Podeszwa, R., Bukowski, R., & Szalewicz, K. (2006b). Density-fitting method in symmetry-adapted perturbation theory based on Kohn–Sham description of monomers. Journal of Chemical Theory and Computation, 2, 400–412. Podeszwa, R., Bukowski, R., & Szalewicz, K. (2006b). Density-fitting method in symmetry-adapted perturbation theory based on Kohn–Sham description of monomers. Journal of Chemical Theory and Computation, 2, 400–412.
Zurück zum Zitat Podeszwa, R., Rice, B. M., & Szalewicz, K. (2008). Predicting structure of molecular crystals from first principles. Physical Review Letters, 101, 115503. Podeszwa, R., Rice, B. M., & Szalewicz, K. (2008). Predicting structure of molecular crystals from first principles. Physical Review Letters, 101, 115503.
Zurück zum Zitat Price, S. L. (2008). Computational prediction of organic crystal structures and polymorphism. International Reviews in Physical Chemistry, 27, 541–568. Price, S. L. (2008). Computational prediction of organic crystal structures and polymorphism. International Reviews in Physical Chemistry, 27, 541–568.
Zurück zum Zitat Price, S. L. (2009). Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Accounts of Chemical Research, 42, 117–126. Price, S. L. (2009). Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Accounts of Chemical Research, 42, 117–126.
Zurück zum Zitat Sadlej, A. J. (1992). Medium-sized polarized basis sets for high-level correlated calculations of molecular electric properties. V. Fourth-row atoms Sn–I. Theoretical Chemistry Accounts, 81, 339–354. Sadlej, A. J. (1992). Medium-sized polarized basis sets for high-level correlated calculations of molecular electric properties. V. Fourth-row atoms Sn–I. Theoretical Chemistry Accounts, 81, 339–354.
Zurück zum Zitat Sadlej, A. J., & Urban, M. (1991). Medium-sized polarized basis sets for high-level correlated calculations of molecular electric properties. III. Alkali atoms (Li, Na, K, Rb) and alkaline-earth atoms (Be, Mg, Ca, Sr). Theochem – Journal of Molecular Structure, 80, 147–171. Sadlej, A. J., & Urban, M. (1991). Medium-sized polarized basis sets for high-level correlated calculations of molecular electric properties. III. Alkali atoms (Li, Na, K, Rb) and alkaline-earth atoms (Be, Mg, Ca, Sr). Theochem – Journal of Molecular Structure, 80, 147–171.
Zurück zum Zitat Sebetci, A., & Beran, G. J. O. (2010). Spatially homogeneous qm/mm for systems of interacting molecules with on-the-fly ab initio force-field parametrization. Journal of Chemical Theory and Computation, 6, 155–167. Sebetci, A., & Beran, G. J. O. (2010). Spatially homogeneous qm/mm for systems of interacting molecules with on-the-fly ab initio force-field parametrization. Journal of Chemical Theory and Computation, 6, 155–167.
Zurück zum Zitat Singh, U. C., & Kollman, P. A. (1984). An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry, 5, 129–145. Singh, U. C., & Kollman, P. A. (1984). An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry, 5, 129–145.
Zurück zum Zitat Sinnokrot, M. O., Valeev, E. F., & Sherrill, C. D. (2002). Estimates of the ab initio limit for pi-pi interactions: The benzene dimer. Journal of the American Chemical Society, 124, 10887–10893. Sinnokrot, M. O., Valeev, E. F., & Sherrill, C. D. (2002). Estimates of the ab initio limit for pi-pi interactions: The benzene dimer. Journal of the American Chemical Society, 124, 10887–10893.
Zurück zum Zitat Stone, A. J. (1993). Computation of charge-transfer energies by perturbation theory. Chemical Physics Letters, 211, 101–109. Stone, A. J. (1993). Computation of charge-transfer energies by perturbation theory. Chemical Physics Letters, 211, 101–109.
Zurück zum Zitat Stone, A. J. (1996). The theory of intermolecular forces. Oxford: Clarendon. Stone, A. J. (1996). The theory of intermolecular forces. Oxford: Clarendon.
Zurück zum Zitat Stone, A. J. (2005). Distributed multipole analysis: Stability for large basis sets. Journal of Chemical Theory and Computation, 1, 1128–1132. Stone, A. J. (2005). Distributed multipole analysis: Stability for large basis sets. Journal of Chemical Theory and Computation, 1, 1128–1132.
Zurück zum Zitat Stone, A. J., & Alderton, M. (1985). Distributed multipole analysis – methods and applications. Molecular Physics, 56, 1047–1064. Stone, A. J., & Alderton, M. (1985). Distributed multipole analysis – methods and applications. Molecular Physics, 56, 1047–1064.
Zurück zum Zitat Stone, A. J., & Misquitta, A. J. (2007). Atom–atom potentials from ab initio calculations. International Reviews in Physical Chemistry, 26, 193–222. Stone, A. J., & Misquitta, A. J. (2007). Atom–atom potentials from ab initio calculations. International Reviews in Physical Chemistry, 26, 193–222.
Zurück zum Zitat Stone, A. J., & Misquitta, A. J. (2009). Charge-transfer in symmetry-adapted perturbation theory. Chemical Physics Letters, 473, 201–205. Stone, A. J., & Misquitta, A. J. (2009). Charge-transfer in symmetry-adapted perturbation theory. Chemical Physics Letters, 473, 201–205.
Zurück zum Zitat Stone, A. J., & Tough, R. J. A. (1984). Spherical tensor theory of long-range intermolecular forces. Chemical Physics Letters, 110, 123–129. Stone, A. J., & Tough, R. J. A. (1984). Spherical tensor theory of long-range intermolecular forces. Chemical Physics Letters, 110, 123–129.
Zurück zum Zitat Szalewicz, K. (2002). Hydrogen bond. In R. A. Meyers et al. (Eds.), Encyclopedia of physical science and technology (3rd ed., Vol. 7, pp. 505–538). San Diego: Academic. Szalewicz, K. (2002). Hydrogen bond. In R. A. Meyers et al. (Eds.), Encyclopedia of physical science and technology (3rd ed., Vol. 7, pp. 505–538). San Diego: Academic.
Zurück zum Zitat Szalewicz, K., Patkowski, K., & Jeziorski, B. (2005). Intermolecular interactions via perturbation theory: From diatoms to biomolecules. In D. J. Wales (Ed.), Intermolecular forces and clusters II (Structure and bonding, Vol. 116, pp. 43–117). Berlin: Springer. Szalewicz, K., Patkowski, K., & Jeziorski, B. (2005). Intermolecular interactions via perturbation theory: From diatoms to biomolecules. In D. J. Wales (Ed.), Intermolecular forces and clusters II (Structure and bonding, Vol. 116, pp. 43–117). Berlin: Springer.
Zurück zum Zitat Tang, K. T., & Toennies, J. P. (1992). The damping function of the van der Waals attraction in the potential between rare gas atoms and metal surfaces. Surface Science Letters, 279, 203–206. Tang, K. T., & Toennies, J. P. (1992). The damping function of the van der Waals attraction in the potential between rare gas atoms and metal surfaces. Surface Science Letters, 279, 203–206.
Zurück zum Zitat Totton, T., Misquitta, A. J., & Kraft, M. (2010). A first principles development of a general anisotropic potential for polycyclic aromatic hydrocarbons. Journal of Chemical Theory and Computation, 6, 683–695. Totton, T., Misquitta, A. J., & Kraft, M. (2010). A first principles development of a general anisotropic potential for polycyclic aromatic hydrocarbons. Journal of Chemical Theory and Computation, 6, 683–695.
Zurück zum Zitat Tozer, D. J. (2000). The asymptotic exchange potential in Kohn–Sham theory. Journal of Chemical Physics, 112, 3507–3515. Tozer, D. J. (2000). The asymptotic exchange potential in Kohn–Sham theory. Journal of Chemical Physics, 112, 3507–3515.
Zurück zum Zitat Tozer, D. J., & Handy, N. C. (1998). Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. Journal of Chemical Physics, 109, 10180–10189. Tozer, D. J., & Handy, N. C. (1998). Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. Journal of Chemical Physics, 109, 10180–10189.
Zurück zum Zitat Tsuzuki, S., & Lüthi, H. P. (2001). Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the pw91 model. Journal of Chemical Physics, 114, 3949–3957. Tsuzuki, S., & Lüthi, H. P. (2001). Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the pw91 model. Journal of Chemical Physics, 114, 3949–3957.
Zurück zum Zitat van Mourik, T., & Gdanitz, R. J. (2002). A critical note on density functional theory studies on rare-gas dimers. Journal of Chemical Physics, 116, 9620–9623. van Mourik, T., & Gdanitz, R. J. (2002). A critical note on density functional theory studies on rare-gas dimers. Journal of Chemical Physics, 116, 9620–9623.
Zurück zum Zitat Vissers, G. W. M., Hesselmann, A., Jansen, G., Wormer, P. E. S., & van der Avoird, A. (2005). New CO–CO interaction potential tested by rovibrational calculations. Journal of Chemical Physics, 122(5), 054306. doi:10.1063/1.1835262. Vissers, G. W. M., Hesselmann, A., Jansen, G., Wormer, P. E. S., & van der Avoird, A. (2005). New CO–CO interaction potential tested by rovibrational calculations. Journal of Chemical Physics, 122(5), 054306. doi:10.​1063/​1.​1835262.
Zurück zum Zitat Wales, D. J. (Ed.). (2005a). Intermolecular forces and clusters I (Structure and bonding). Berlin: Springer. Wales, D. J. (Ed.). (2005a). Intermolecular forces and clusters I (Structure and bonding). Berlin: Springer.
Zurück zum Zitat Wales, D. J. (Ed.). (2005b). Intermolecular forces and clusters II (Structure and bonding). Berlin: Springer. Wales, D. J. (Ed.). (2005b). Intermolecular forces and clusters II (Structure and bonding). Berlin: Springer.
Zurück zum Zitat Weigend, F., Haser, M., Patzelt, H., & Ahlrichs, R. (1998). RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chemical Physics Letters, 294, 143–152. Weigend, F., Haser, M., Patzelt, H., & Ahlrichs, R. (1998). RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chemical Physics Letters, 294, 143–152.
Zurück zum Zitat Weigend, F., Kohn, A., & Hattig, C. (2002). Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. Journal of Chemical Physics, 116, 3175–3183. Weigend, F., Kohn, A., & Hattig, C. (2002). Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. Journal of Chemical Physics, 116, 3175–3183.
Zurück zum Zitat Welch, G. W. A., Karamertzanis, P. G., Misquitta, A. J., Stone, A. J., & Price, S. L. (2008). Is the induction energy important for modeling organic crystals? Journal of Chemical Theory and Computation, 4, 522–532. Welch, G. W. A., Karamertzanis, P. G., Misquitta, A. J., Stone, A. J., & Price, S. L. (2008). Is the induction energy important for modeling organic crystals? Journal of Chemical Theory and Computation, 4, 522–532.
Zurück zum Zitat Werner, H.-J., Knowles, P. J., Lindh, R., Manby, F. R., Schütz, M., Celani, P., Korona, T., Mitrushenkov, A., Rauhut, G., Adler, T. B., Amos, R. D., Bernhardsson, A., Berning, A., Cooper, D. L., Deegan, M. J. O., Dobbyn, A. J., Eckert, F., Goll, E., Hampel, C., Hetzer, G., Hrenar, T., Knizia, G., Köppl, C., Liu, Y., Lloyd, A. W., Mata, R. A., May, A. J., McNicholas, S. J., Meyer, W., Mura, M. E., Nicklass, A., Palmieri, P., Pflüger, K., Pitzer, R., Reiher, M., Schumann, U., Stoll, H., Stone, A. J., Tarroni, R., Thorsteinsson, T., Wang, M., & Wolf, A. (2008). Molpro, version 2008.3, a package of ab initio programs. See http://www.molpro.net. Accessed 18 July 2011. Werner, H.-J., Knowles, P. J., Lindh, R., Manby, F. R., Schütz, M., Celani, P., Korona, T., Mitrushenkov, A., Rauhut, G., Adler, T. B., Amos, R. D., Bernhardsson, A., Berning, A., Cooper, D. L., Deegan, M. J. O., Dobbyn, A. J., Eckert, F., Goll, E., Hampel, C., Hetzer, G., Hrenar, T., Knizia, G., Köppl, C., Liu, Y., Lloyd, A. W., Mata, R. A., May, A. J., McNicholas, S. J., Meyer, W., Mura, M. E., Nicklass, A., Palmieri, P., Pflüger, K., Pitzer, R., Reiher, M., Schumann, U., Stoll, H., Stone, A. J., Tarroni, R., Thorsteinsson, T., Wang, M., & Wolf, A. (2008). Molpro, version 2008.3, a package of ab initio programs. See http://​www.​molpro.​net. Accessed 18 July 2011.
Zurück zum Zitat Wheatley, R. J., & Lillestolen, T. C. (2008). Local polarizabilities and dispersion energy coefficients. Molecular Physics, 106, 1545–1556. Wheatley, R. J., & Lillestolen, T. C. (2008). Local polarizabilities and dispersion energy coefficients. Molecular Physics, 106, 1545–1556.
Zurück zum Zitat Williams, D. E. (2001a). Improved intermolecular force field for crystalline oxohydrocarbons including O-H…O hydrogen bonds. Journal of Computational Chemistry, 22, 1–20. Williams, D. E. (2001a). Improved intermolecular force field for crystalline oxohydrocarbons including O-H…O hydrogen bonds. Journal of Computational Chemistry, 22, 1–20.
Zurück zum Zitat Williams, D. E. (2001b). Improved intermolecular force field for molecules containing H, C, N, and O atoms, with applications to nucleoside and peptide crystals. Journal of Computational Chemistry, 22, 1154–1166. Williams, D. E. (2001b). Improved intermolecular force field for molecules containing H, C, N, and O atoms, with applications to nucleoside and peptide crystals. Journal of Computational Chemistry, 22, 1154–1166.
Zurück zum Zitat Williams, G. J., & Stone, A. J. (2003). Distributed dispersion: A new approach. Journal of Chemical Physics, 119, 4620–4628. Williams, G. J., & Stone, A. J. (2003). Distributed dispersion: A new approach. Journal of Chemical Physics, 119, 4620–4628.
Zurück zum Zitat Williams, H. L., Mas, E. M., Szalewicz, K., & Jeziorski, B. (1995). On the effectiveness of monomer-, dimer-, and bond-centered basis functions in calculations of intermolecular interaction energies. Journal of Chemical Physics, 103, 7374–7391. Williams, H. L., Mas, E. M., Szalewicz, K., & Jeziorski, B. (1995). On the effectiveness of monomer-, dimer-, and bond-centered basis functions in calculations of intermolecular interaction energies. Journal of Chemical Physics, 103, 7374–7391.
Zurück zum Zitat Woon, D. E., & Dunning, T. H. (1994). Gaussian basis sets foty use in correlated molecular calculations. IV. Calculation of static. Electricalresponse properties. Journal of Chemical Physics, 100, 2975–2989. Woon, D. E., & Dunning, T. H. (1994). Gaussian basis sets foty use in correlated molecular calculations. IV. Calculation of static. Electricalresponse properties. Journal of Chemical Physics, 100, 2975–2989.
Zurück zum Zitat Xu, Y., Jager, W., Tang, J., & McKellar, A. R. W. (2003). Physical Review Letters, 91, 163401(4). Xu, Y., Jager, W., Tang, J., & McKellar, A. R. W. (2003). Physical Review Letters, 91, 163401(4).
Zurück zum Zitat Zaremba, E., & Kohn, W. (1976). Van der Waals interaction between an atom and a solid surface. Physical Review B, 13, 2270–2285. Zaremba, E., & Kohn, W. (1976). Van der Waals interaction between an atom and a solid surface. Physical Review B, 13, 2270–2285.
Metadaten
Titel
Intermolecular Interactions
verfasst von
Alston J. Misquitta
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-27282-5_6