Skip to main content

2020 | OriginalPaper | Buchkapitel

6. Internally Finned Tubes and Spirally Fluted Tubes

verfasst von : Sujoy Kumar Saha, Hrishiraj Ranjan, Madhu Sruthi Emani, Anand Kumar Bharti

Erschienen in: Heat Transfer Enhancement in Externally Finned Tubes and Internally Finned Tubes and Annuli

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The heat transfer and pressure drop characteristics of internally finned tubes and spirally fluted tubes are presented in detail in this chapter. The correlations for Nusselt number and friction factor are also presented and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Afroz HM, Miyara A (2007) Friction factor correlation and pressure loss of single-phase flow inside herringbone microfin tubes. Int J Refrig 30(7):1187–1194CrossRef Afroz HM, Miyara A (2007) Friction factor correlation and pressure loss of single-phase flow inside herringbone microfin tubes. Int J Refrig 30(7):1187–1194CrossRef
Zurück zum Zitat Alam I, Ghoshdastidar PS (2002) A study of heat transfer effectiveness of circular tubes with internal longitudinal fins having tapered lateral profiles. Int J Heat Mass Transf 45:1371–1376MATHCrossRef Alam I, Ghoshdastidar PS (2002) A study of heat transfer effectiveness of circular tubes with internal longitudinal fins having tapered lateral profiles. Int J Heat Mass Transf 45:1371–1376MATHCrossRef
Zurück zum Zitat Al-Fahed SF, Ayub ZH, Al-Marafie AM, Soliman BM (1993) Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow conditions. Exp Thermal Fluid Sci 7(3):249–253CrossRef Al-Fahed SF, Ayub ZH, Al-Marafie AM, Soliman BM (1993) Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow conditions. Exp Thermal Fluid Sci 7(3):249–253CrossRef
Zurück zum Zitat Al-Fahed S, Chamra LM, Chakroun W (1998) Pressure drop and heat transfer comparison for both microfin tube and twisted-tape inserts in laminar flow. Exp Thermal Fluid Sci 18(4):323–333CrossRef Al-Fahed S, Chamra LM, Chakroun W (1998) Pressure drop and heat transfer comparison for both microfin tube and twisted-tape inserts in laminar flow. Exp Thermal Fluid Sci 18(4):323–333CrossRef
Zurück zum Zitat Arnold JA, Garimella S, Christensen RN (1993) Fluted tube heat exchanger design manual. GRI Report 5092-243-2357 Arnold JA, Garimella S, Christensen RN (1993) Fluted tube heat exchanger design manual. GRI Report 5092-243-2357
Zurück zum Zitat Aroonrat K, Jumpholkul C, Leelaprachakul R, Dalkilic AS, Mahian O, Wongwises S (2013) Heat transfer and single-phase flow in internally grooved tubes. Int Commun Heat Mass Transf 42:62–68CrossRef Aroonrat K, Jumpholkul C, Leelaprachakul R, Dalkilic AS, Mahian O, Wongwises S (2013) Heat transfer and single-phase flow in internally grooved tubes. Int Commun Heat Mass Transf 42:62–68CrossRef
Zurück zum Zitat Barba A, Bergles G, Gosman AD, Launder BE (1983) The prediction of convective heat transfer in viscous flow through spirally fluted tubes. ASME Paper 83-WA/HT-37 Barba A, Bergles G, Gosman AD, Launder BE (1983) The prediction of convective heat transfer in viscous flow through spirally fluted tubes. ASME Paper 83-WA/HT-37
Zurück zum Zitat Bandarra Filho EP, Saiz Jabardo JM, Lopez Barbieri PE (2004) Convective boiling pressure drop of refrigerant R-134A in horizontal smooth and microfin tubes. Int J Refrig 27:895–903CrossRef Bandarra Filho EP, Saiz Jabardo JM, Lopez Barbieri PE (2004) Convective boiling pressure drop of refrigerant R-134A in horizontal smooth and microfin tubes. Int J Refrig 27:895–903CrossRef
Zurück zum Zitat Bar-Cohen A, Kraus AD (1990) Advances in thermal modeling of electronic components and systems. ASME, New York, p 2 Bar-Cohen A, Kraus AD (1990) Advances in thermal modeling of electronic components and systems. ASME, New York, p 2
Zurück zum Zitat Baughn JW, Kapila K, Perera CK, Yan X (1993) An experimental study of local heat transfer in a spirally fluted tube. In: Turbulent enhanced heat transfer, HTD, vol 239, pp 49–56 Baughn JW, Kapila K, Perera CK, Yan X (1993) An experimental study of local heat transfer in a spirally fluted tube. In: Turbulent enhanced heat transfer, HTD, vol 239, pp 49–56
Zurück zum Zitat Bergles AE, Joshi SD (1983) Augmentation techniques for low Reynolds number in-tube flow. In: Kakaç S, Shah RK, Bergles AE (eds) Low Reynolds number flow heat exchangers. Hemisphere, Washington, DC, pp 694–720 Bergles AE, Joshi SD (1983) Augmentation techniques for low Reynolds number in-tube flow. In: Kakaç S, Shah RK, Bergles AE (eds) Low Reynolds number flow heat exchangers. Hemisphere, Washington, DC, pp 694–720
Zurück zum Zitat Bergles AE, Manglik RM (2013) Current progress and new development in enhanced heat and mass transfer. J Enhanc Heat Transf 20(1):1–15CrossRef Bergles AE, Manglik RM (2013) Current progress and new development in enhanced heat and mass transfer. J Enhanc Heat Transf 20(1):1–15CrossRef
Zurück zum Zitat Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Introduction to heat transfer, 6th edn. Wiley, New York Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Introduction to heat transfer, 6th edn. Wiley, New York
Zurück zum Zitat Bhatia RS, Webb RL (2001) Numerical study of turbulent flow and heat transfer in microfin tubes—part 2, parametric study. J Enhanc Heat Transf 8:305–314CrossRef Bhatia RS, Webb RL (2001) Numerical study of turbulent flow and heat transfer in microfin tubes—part 2, parametric study. J Enhanc Heat Transf 8:305–314CrossRef
Zurück zum Zitat Bilen K, Cetin M, Gul H, Balta T (2009) The investigation of groove geometry effect on heat transfer for internally grooved tubes. Appl Therm Engg 29(4):753–761CrossRef Bilen K, Cetin M, Gul H, Balta T (2009) The investigation of groove geometry effect on heat transfer for internally grooved tubes. Appl Therm Engg 29(4):753–761CrossRef
Zurück zum Zitat Blumenkrantz A, Taborek J (1971) Heat transfer and pressure drop characteristics of Turbotec spirally deep grooved tubes in the laminar and transition regime. Report 2439-300-8, April 1971, Heat Transfer Research, Inc. Blumenkrantz A, Taborek J (1971) Heat transfer and pressure drop characteristics of Turbotec spirally deep grooved tubes in the laminar and transition regime. Report 2439-300-8, April 1971, Heat Transfer Research, Inc.
Zurück zum Zitat Bogart J, Thors P (1999) In-tube evaporation and condensation of R-22 and R-410A with plain and internally enhanced tubes. J Enhanc Heat Transf 6:37–50CrossRef Bogart J, Thors P (1999) In-tube evaporation and condensation of R-22 and R-410A with plain and internally enhanced tubes. J Enhanc Heat Transf 6:37–50CrossRef
Zurück zum Zitat Braga CVM, Saboya FEM (1986) Turbulent heat transfer and pressure drop in smooth and finned annular ducts. In: Heat transfer 1986, vol 6. Hemisphere Publishing Corporation, Washington, DC, pp 2831–2836 Braga CVM, Saboya FEM (1986) Turbulent heat transfer and pressure drop in smooth and finned annular ducts. In: Heat transfer 1986, vol 6. Hemisphere Publishing Corporation, Washington, DC, pp 2831–2836
Zurück zum Zitat Brognaux LJ, Webb RL, Chamra LM, Chung BY (1997) Single-phase heat transfer in micro-fin tubes. Int J Heat Mass Transf 40:4345–4357CrossRef Brognaux LJ, Webb RL, Chamra LM, Chung BY (1997) Single-phase heat transfer in micro-fin tubes. Int J Heat Mass Transf 40:4345–4357CrossRef
Zurück zum Zitat Carnavos TC (1979) Cooling air in turbulent flow with internally finned tubes. Heat Transf Eng 1(2):41–46CrossRef Carnavos TC (1979) Cooling air in turbulent flow with internally finned tubes. Heat Transf Eng 1(2):41–46CrossRef
Zurück zum Zitat Carnavos TC (1980) Heat transfer performance of internally finned tubes in turbulent flow. Heat Transf Eng 4(1):32–37CrossRef Carnavos TC (1980) Heat transfer performance of internally finned tubes in turbulent flow. Heat Transf Eng 4(1):32–37CrossRef
Zurück zum Zitat Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (1997) Pressure drop during condensation and vaporization of refrigerants inside enhanced tubes. Heat Technol 15(1):3–10 Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (1997) Pressure drop during condensation and vaporization of refrigerants inside enhanced tubes. Heat Technol 15(1):3–10
Zurück zum Zitat Cavallini A, Del Col D, Mancin S, Rossetto L (2006) Thermal performance of R-410A condensing in a microfin tube. In: Proceedings of the international refrigeration conference at Purdue, R178 Cavallini A, Del Col D, Mancin S, Rossetto L (2006) Thermal performance of R-410A condensing in a microfin tube. In: Proceedings of the international refrigeration conference at Purdue, R178
Zurück zum Zitat Celen A, Dalkilic AS, Wongwises S (2013) Experimental analysis of the single phase pressure drop characteristics of smooth and micro-fin tubes. Int Commun Heat Mass Transf 46:58–66CrossRef Celen A, Dalkilic AS, Wongwises S (2013) Experimental analysis of the single phase pressure drop characteristics of smooth and micro-fin tubes. Int Commun Heat Mass Transf 46:58–66CrossRef
Zurück zum Zitat Chamra LM, Mago PJ (2007) Modeling of evaporation heat transfer of pure refrigerants and refrigerant mixtures in microfin tubes. Proc Inst Mech Eng, Part C J Mech Eng Sci 221:443–454CrossRef Chamra LM, Mago PJ (2007) Modeling of evaporation heat transfer of pure refrigerants and refrigerant mixtures in microfin tubes. Proc Inst Mech Eng, Part C J Mech Eng Sci 221:443–454CrossRef
Zurück zum Zitat Chang SW, Jan YJ, Liou JS (2007) Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape. Int J Therm Sci 46(5):506–518CrossRef Chang SW, Jan YJ, Liou JS (2007) Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape. Int J Therm Sci 46(5):506–518CrossRef
Zurück zum Zitat Chen J, Muller-Steinhagen H, Duffy GG (2001) Heat transfer enhancement in dimpled tubes. Appl Therm Eng 21:535–547CrossRef Chen J, Muller-Steinhagen H, Duffy GG (2001) Heat transfer enhancement in dimpled tubes. Appl Therm Eng 21:535–547CrossRef
Zurück zum Zitat Choi JY, Kedzierski MA, Domanski PA (2001) Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes. In: Proc of IIF-IIR Commission B1 Paderborn Germany, vol B4, pp 9–16 Choi JY, Kedzierski MA, Domanski PA (2001) Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes. In: Proc of IIF-IIR Commission B1 Paderborn Germany, vol B4, pp 9–16
Zurück zum Zitat Choi JM, Kim Y, Lee M (2010) Air side heat transfer coefficients of discreteplate finned-tube heat exchangers with large fin pitch. Appl Therm Eng 30(s2–3):174–180CrossRef Choi JM, Kim Y, Lee M (2010) Air side heat transfer coefficients of discreteplate finned-tube heat exchangers with large fin pitch. Appl Therm Eng 30(s2–3):174–180CrossRef
Zurück zum Zitat Choudhury D, Patankar SV (1985) Analysis of developing laminar flow and heat transfer in tubes with radial internal fins. In: Shenkman SM, O’Brien JE, Habib IS, Kohler JA (eds) Advances in enhanced heat transfer, HTD, vol 43, pp 57–64 Choudhury D, Patankar SV (1985) Analysis of developing laminar flow and heat transfer in tubes with radial internal fins. In: Shenkman SM, O’Brien JE, Habib IS, Kohler JA (eds) Advances in enhanced heat transfer, HTD, vol 43, pp 57–64
Zurück zum Zitat Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Oxford University Press, Oxford Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Oxford University Press, Oxford
Zurück zum Zitat Cope WG (1945) The friction and heat transmission coefficients of rough pipes. Proc Inst Mech Eng 145:99–105CrossRef Cope WG (1945) The friction and heat transmission coefficients of rough pipes. Proc Inst Mech Eng 145:99–105CrossRef
Zurück zum Zitat Copetti JB, Macagnan MH, de Souza D, Oliveski RDC (2004) Experiments with micro-fin tube in single phase. Int J Refrig 27(8):876–883CrossRef Copetti JB, Macagnan MH, de Souza D, Oliveski RDC (2004) Experiments with micro-fin tube in single phase. Int J Refrig 27(8):876–883CrossRef
Zurück zum Zitat Dagtekin I, Oztop HF, Sahin AZ (2005) An analysis of entropy generation through a circular duct with different shaped longitudinal fins for laminar flow. Int J Heat Mass Transf 48:171–181MATHCrossRef Dagtekin I, Oztop HF, Sahin AZ (2005) An analysis of entropy generation through a circular duct with different shaped longitudinal fins for laminar flow. Int J Heat Mass Transf 48:171–181MATHCrossRef
Zurück zum Zitat Dipprey DF, Sabersky RH (1963) Heat and momentum transfer in smooth and rough tubes at various Prandtl number. Int J Heat Mass Transf 6:329–353CrossRef Dipprey DF, Sabersky RH (1963) Heat and momentum transfer in smooth and rough tubes at various Prandtl number. Int J Heat Mass Transf 6:329–353CrossRef
Zurück zum Zitat Duan L, Ling X, Peng H (2018) Flow and heat transfer characteristics of a double-tube structure internal finned tube with blossom shape internal fins. Appl Therm Eng 128:1102–1115CrossRef Duan L, Ling X, Peng H (2018) Flow and heat transfer characteristics of a double-tube structure internal finned tube with blossom shape internal fins. Appl Therm Eng 128:1102–1115CrossRef
Zurück zum Zitat Eckert ERG, Irvine TF (1960) Pressure drop and heat transfer in a duct with triangular cross section. J Heat Transf 82(2):125–136CrossRef Eckert ERG, Irvine TF (1960) Pressure drop and heat transfer in a duct with triangular cross section. J Heat Transf 82(2):125–136CrossRef
Zurück zum Zitat El-Sayed SA, Abdel-Hamid ME, Sadoun MM (1997) Experimental study of turbulent flow inside a circular tube with longitudinal interrupted fins in the streamwise direction. Exp Therm Fluid Sci 15:1–15CrossRef El-Sayed SA, Abdel-Hamid ME, Sadoun MM (1997) Experimental study of turbulent flow inside a circular tube with longitudinal interrupted fins in the streamwise direction. Exp Therm Fluid Sci 15:1–15CrossRef
Zurück zum Zitat Fabbri G (1998) Heat transfer optimization in internally finned tubes under laminar flow conditions. Int J Heat Mass Transf 41(10):1243–1253MATHCrossRef Fabbri G (1998) Heat transfer optimization in internally finned tubes under laminar flow conditions. Int J Heat Mass Transf 41(10):1243–1253MATHCrossRef
Zurück zum Zitat Fabbri G (1999) Optimum profiles for asymmetrical longitudinal fins in cylindrical ducts. Int J Heat Mass Transf 42:511–523MATHCrossRef Fabbri G (1999) Optimum profiles for asymmetrical longitudinal fins in cylindrical ducts. Int J Heat Mass Transf 42:511–523MATHCrossRef
Zurück zum Zitat Fabbri G (2004) Effect of viscous dissipation on the optimization of the heat transfer in internally finned tubes. Int J Heat Mass Transf 47:3003–3015MATHCrossRef Fabbri G (2004) Effect of viscous dissipation on the optimization of the heat transfer in internally finned tubes. Int J Heat Mass Transf 47:3003–3015MATHCrossRef
Zurück zum Zitat Fabbri G (2005) Optimum cross-section design of internally finned tubes cooled by a viscous fluid. Control Eng Pract 13:929–938CrossRef Fabbri G (2005) Optimum cross-section design of internally finned tubes cooled by a viscous fluid. Control Eng Pract 13:929–938CrossRef
Zurück zum Zitat Fujie K, Itoh N, Innami T, Kimura H, Nakayama N, Yanugidi T (1977) Heat transfer pipe. U. S. Patent 4,044,797, assigned to Hitachi Ltd Fujie K, Itoh N, Innami T, Kimura H, Nakayama N, Yanugidi T (1977) Heat transfer pipe. U. S. Patent 4,044,797, assigned to Hitachi Ltd
Zurück zum Zitat García A, Solano JP, Vicente PG, Viedma A (2012) The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils. Appl Therm Eng 35:196–201CrossRef García A, Solano JP, Vicente PG, Viedma A (2012) The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils. Appl Therm Eng 35:196–201CrossRef
Zurück zum Zitat Garimella S, Christensen RN (1995a) Heat transfer and pressure drop characteristics of spirally fluted annuli: part I—hydrodynamics. J Heat Transf 117:54–60CrossRef Garimella S, Christensen RN (1995a) Heat transfer and pressure drop characteristics of spirally fluted annuli: part I—hydrodynamics. J Heat Transf 117:54–60CrossRef
Zurück zum Zitat Garimella S, Christensen RN (1995b) Heat transfer and pressure drop characteristics of spirally fluted annuli: park II—heat transfer. J Heat Transf 117:61–68CrossRef Garimella S, Christensen RN (1995b) Heat transfer and pressure drop characteristics of spirally fluted annuli: park II—heat transfer. J Heat Transf 117:61–68CrossRef
Zurück zum Zitat Gee DL, Webb RL (1980) Forced convection heat transfer in helically rib-roughened tubes. Int J Heat Mass Transf 23(8):1127–1136CrossRef Gee DL, Webb RL (1980) Forced convection heat transfer in helically rib-roughened tubes. Int J Heat Mass Transf 23(8):1127–1136CrossRef
Zurück zum Zitat Ghiaasiaan SM (2008) Two-phase flow boiling and condensation. Cambridge University Press, CambridgeMATH Ghiaasiaan SM (2008) Two-phase flow boiling and condensation. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Goto M, Inoue N, Ishiwatari N (2001) Condensation and evaporation heat transfer of R-410A inside internally grooved horizontal tubes. Int J Refrig 24(7):628–638CrossRef Goto M, Inoue N, Ishiwatari N (2001) Condensation and evaporation heat transfer of R-410A inside internally grooved horizontal tubes. Int J Refrig 24(7):628–638CrossRef
Zurück zum Zitat Goto M, Inoue N, Yonemoto R (2003) Condensation heat transfer of R410A inside internally grooved horizontal tubes. Int J Refrig 26(4):410–416CrossRef Goto M, Inoue N, Yonemoto R (2003) Condensation heat transfer of R410A inside internally grooved horizontal tubes. Int J Refrig 26(4):410–416CrossRef
Zurück zum Zitat Gowen RA, Smith JW (1968) Turbulent heat transfer from smooth and rough surfaces. Int J Heat Mass Transf 11:1657–1673CrossRef Gowen RA, Smith JW (1968) Turbulent heat transfer from smooth and rough surfaces. Int J Heat Mass Transf 11:1657–1673CrossRef
Zurück zum Zitat Hamilton LJ, Kedzierski MA, Kaul MP (2008) Horizontal convective boiling of pure and mixed refrigerants within a micro-fin tube. J Enhanc Heat Transf 15(3):211–226CrossRef Hamilton LJ, Kedzierski MA, Kaul MP (2008) Horizontal convective boiling of pure and mixed refrigerants within a micro-fin tube. J Enhanc Heat Transf 15(3):211–226CrossRef
Zurück zum Zitat Han DH, Lee KJ (2005) Single-phase heat transfer and flow characteristics of micro-fin tubes. Appl Therm Engg 25(11–12):1657–1669CrossRef Han DH, Lee KJ (2005) Single-phase heat transfer and flow characteristics of micro-fin tubes. Appl Therm Engg 25(11–12):1657–1669CrossRef
Zurück zum Zitat Hatami M, Jafaryar M, Ganji DD, Gorji-Bandpy M (2014) Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques. Int Commun Heat Mass 57:254–263CrossRef Hatami M, Jafaryar M, Ganji DD, Gorji-Bandpy M (2014) Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques. Int Commun Heat Mass 57:254–263CrossRef
Zurück zum Zitat Hatami M, Ganji DD, Gorji-Bandpy M (2015) Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers Manag 97:26–41CrossRef Hatami M, Ganji DD, Gorji-Bandpy M (2015) Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers Manag 97:26–41CrossRef
Zurück zum Zitat Hilding WE, Coogan CH Jr (1964) Heat transfer and pressure drop in internally finned tubes. In: ASME symposium on air cooled heat exchangers. ASME, New York, pp 57–84 Hilding WE, Coogan CH Jr (1964) Heat transfer and pressure drop in internally finned tubes. In: ASME symposium on air cooled heat exchangers. ASME, New York, pp 57–84
Zurück zum Zitat Hu MH, Chang YP (1973) Optimization of finned tubes for heat transfer in laminar flow. J Heat Transf 95(3):332–338CrossRef Hu MH, Chang YP (1973) Optimization of finned tubes for heat transfer in laminar flow. J Heat Transf 95(3):332–338CrossRef
Zurück zum Zitat Huang D, Zhao RJ, Liu Y (2014) Effect of fin types of outdoor fan-supplied finned-tube heat exchanger on periodic frosting and defrosting performance of a residential air-source heat pump. Appl Therm Eng 69(1–2):251–260CrossRef Huang D, Zhao RJ, Liu Y (2014) Effect of fin types of outdoor fan-supplied finned-tube heat exchanger on periodic frosting and defrosting performance of a residential air-source heat pump. Appl Therm Eng 69(1–2):251–260CrossRef
Zurück zum Zitat Huq M, Huq AAU, Rahman MM (1998) Experimental measurements of heat transfer in an internally finned tube. Int Commun Heat Mass Transf 25(5):619–630CrossRef Huq M, Huq AAU, Rahman MM (1998) Experimental measurements of heat transfer in an internally finned tube. Int Commun Heat Mass Transf 25(5):619–630CrossRef
Zurück zum Zitat Iqbal Z, Syed KS, Ishaq M (2013) Optimal fin shape in finned double pipe with fully developed laminar flow. Appl Therm Eng 51:1202–1223CrossRef Iqbal Z, Syed KS, Ishaq M (2013) Optimal fin shape in finned double pipe with fully developed laminar flow. Appl Therm Eng 51:1202–1223CrossRef
Zurück zum Zitat Islam MA, Mozumder AK (2009) Forced convection heat transfer performance of an internally finned tube. J Mech Eng 40:54–62CrossRef Islam MA, Mozumder AK (2009) Forced convection heat transfer performance of an internally finned tube. J Mech Eng 40:54–62CrossRef
Zurück zum Zitat Ivanović M, Selimović R, Bajramović R (1990) Mathematical modeling of heat transfer in internally finned tubes. In: Hanjalić H (ed) Mathematical modeling and computer simulation of processes in energy systems. Hemisphere Publishing Corp, Washington, DC, pp 147–153 Ivanović M, Selimović R, Bajramović R (1990) Mathematical modeling of heat transfer in internally finned tubes. In: Hanjalić H (ed) Mathematical modeling and computer simulation of processes in energy systems. Hemisphere Publishing Corp, Washington, DC, pp 147–153
Zurück zum Zitat Jensen MK, Vlakancic A (1999) Technical note experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes. Int J Heat Mass Transf 42(7):1343–1351CrossRef Jensen MK, Vlakancic A (1999) Technical note experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes. Int J Heat Mass Transf 42(7):1343–1351CrossRef
Zurück zum Zitat Kelkar KM, Patankar SV (1990) Numerical prediction of fluid flow and heat transfer in a circular tube with longitudinal fins interrupted in the steamwise direction. J Heat Transf 112:342–348CrossRef Kelkar KM, Patankar SV (1990) Numerical prediction of fluid flow and heat transfer in a circular tube with longitudinal fins interrupted in the steamwise direction. J Heat Transf 112:342–348CrossRef
Zurück zum Zitat Kido O, Taniguchi M, Taira T, Uehara H (1995) Evaporation heat transfer of HCFC22 inside an internally grooved horizontal tube. Proc ASME/JSME Therm Eng Conf 2:323–330 Kido O, Taniguchi M, Taira T, Uehara H (1995) Evaporation heat transfer of HCFC22 inside an internally grooved horizontal tube. Proc ASME/JSME Therm Eng Conf 2:323–330
Zurück zum Zitat Kim NH (2015a) Single-phase pressure drop and heat transfer measurements of turbulent flow inside helically dimpled tubes. J Enhanc Heat Transf 22(4):345–363CrossRef Kim NH (2015a) Single-phase pressure drop and heat transfer measurements of turbulent flow inside helically dimpled tubes. J Enhanc Heat Transf 22(4):345–363CrossRef
Zurück zum Zitat Kim NH (2015b) Effect of aspect ratio on evaporation heat transfer and pressure drop of R-410A in flattened microfin tubes. J Enhanc Heat Transf 22(3):177–197CrossRef Kim NH (2015b) Effect of aspect ratio on evaporation heat transfer and pressure drop of R-410A in flattened microfin tubes. J Enhanc Heat Transf 22(3):177–197CrossRef
Zurück zum Zitat Kim DK (2016) Thermal optimization of internally finned tube with variable fin thickness. Appl Therm Eng 102:1250–1261CrossRef Kim DK (2016) Thermal optimization of internally finned tube with variable fin thickness. Appl Therm Eng 102:1250–1261CrossRef
Zurück zum Zitat Kim DK, Kim SJ (2007) Closed form correlations for thermal optimization of microchannels. Int J Heat Mass Transf 50(25):5318–5322MATHCrossRef Kim DK, Kim SJ (2007) Closed form correlations for thermal optimization of microchannels. Int J Heat Mass Transf 50(25):5318–5322MATHCrossRef
Zurück zum Zitat Kim NH, Kim SH (2010) Dry and wet air-side performance of a louver-finned heat exchanger having flat tubes. J Mech Sci Technol 24:1553–1561CrossRef Kim NH, Kim SH (2010) Dry and wet air-side performance of a louver-finned heat exchanger having flat tubes. J Mech Sci Technol 24:1553–1561CrossRef
Zurück zum Zitat Kim NH, Webb RL (1989) Experimental study of particulate fouling in enhanced water chiller condenser tubes. ASHRAE Trans 76(2):507–515 Kim NH, Webb RL (1989) Experimental study of particulate fouling in enhanced water chiller condenser tubes. ASHRAE Trans 76(2):507–515
Zurück zum Zitat Kim NH, Webb RL (1993) Analytic prediction of the friction and heat transfer for turbulent flow in axial internal fin tubes. J Heat Transf 115(3):553–559CrossRef Kim NH, Webb RL (1993) Analytic prediction of the friction and heat transfer for turbulent flow in axial internal fin tubes. J Heat Transf 115(3):553–559CrossRef
Zurück zum Zitat Kim SJ, Yoo JW, Jang SP (2002) Thermal optimization of a circular-sectored finned tube using a porous medium approach. J Heat Transf 124(6):1026–1033CrossRef Kim SJ, Yoo JW, Jang SP (2002) Thermal optimization of a circular-sectored finned tube using a porous medium approach. J Heat Transf 124(6):1026–1033CrossRef
Zurück zum Zitat Kim DK, Jung J, Kim SJ (2010) Thermal optimization of plate-fin heat sinks with variable fin thickness. Int J Heat Mass Transf 53(25):5988–5995MATHCrossRef Kim DK, Jung J, Kim SJ (2010) Thermal optimization of plate-fin heat sinks with variable fin thickness. Int J Heat Mass Transf 53(25):5988–5995MATHCrossRef
Zurück zum Zitat Kim NH, Lee EJ, Byun HW (2013) Evaporation heat transfer and pressure drop of R-410A in flattened smooth tubes having different aspect ratios. Int J Refrig 36:363–374CrossRef Kim NH, Lee EJ, Byun HW (2013) Evaporation heat transfer and pressure drop of R-410A in flattened smooth tubes having different aspect ratios. Int J Refrig 36:363–374CrossRef
Zurück zum Zitat Kiml R, Magda A, Mochizuki S, Murata A (2004) Rib-induced secondary flow effects on local circumferential heat transfer distribution inside a circular rib-roughened tube. Int J Heat Mass Transf 47(6–7):1403–1412CrossRef Kiml R, Magda A, Mochizuki S, Murata A (2004) Rib-induced secondary flow effects on local circumferential heat transfer distribution inside a circular rib-roughened tube. Int J Heat Mass Transf 47(6–7):1403–1412CrossRef
Zurück zum Zitat Koyama S, Yu J, Momoki S, Fujii T, Honda H (1995) Forced convective flow boiling heat transfer of pure refrigerants inside a horizontal microfin tube. In: Proceedings of the engineering foundation conference on convective flow boiling. ASME Banff Canada Koyama S, Yu J, Momoki S, Fujii T, Honda H (1995) Forced convective flow boiling heat transfer of pure refrigerants inside a horizontal microfin tube. In: Proceedings of the engineering foundation conference on convective flow boiling. ASME Banff Canada
Zurück zum Zitat Kumar R (1997) Three-dimensional natural convective flow in a vertical annulus with longitudinal fins. Int J Heat Mass Transf 40:3323–3334MATHCrossRef Kumar R (1997) Three-dimensional natural convective flow in a vertical annulus with longitudinal fins. Int J Heat Mass Transf 40:3323–3334MATHCrossRef
Zurück zum Zitat Kumbhar DG, Sane NK (2015) Exploring heat transfer and friction factor performance of a dimpled tube equipped with regularly spaced twisted tape inserts. Procedia Eng 127:1142–1149CrossRef Kumbhar DG, Sane NK (2015) Exploring heat transfer and friction factor performance of a dimpled tube equipped with regularly spaced twisted tape inserts. Procedia Eng 127:1142–1149CrossRef
Zurück zum Zitat Kuo CS, Wang CC (1996) In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube. Int J Heat Mass Transf 39(12):2559–2569CrossRef Kuo CS, Wang CC (1996) In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube. Int J Heat Mass Transf 39(12):2559–2569CrossRef
Zurück zum Zitat Kuwahara H, Takahashi K, Yanagida T, Nakayama W, Sugimoto S, Oizumi K (1989) Method of producing a heat transfer tube for single-phase flow. US Patent 4,794,775 issued to Hitachi Cable Ltd Kuwahara H, Takahashi K, Yanagida T, Nakayama W, Sugimoto S, Oizumi K (1989) Method of producing a heat transfer tube for single-phase flow. US Patent 4,794,775 issued to Hitachi Cable Ltd
Zurück zum Zitat Lemouedda A, Schmid A, Franz E et al (2011) Numerical investigations for the optimization of serrated finned-tube heat exchangers. Appl Therm Eng 31(8–9):1393–1401CrossRef Lemouedda A, Schmid A, Franz E et al (2011) Numerical investigations for the optimization of serrated finned-tube heat exchangers. Appl Therm Eng 31(8–9):1393–1401CrossRef
Zurück zum Zitat Li XW, Meng JA, Li ZX (2007) Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube. Exp Thermal Fluid Sci 32(2):641–648CrossRef Li XW, Meng JA, Li ZX (2007) Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube. Exp Thermal Fluid Sci 32(2):641–648CrossRef
Zurück zum Zitat Li GQ, Wu Z, Li W, Wang ZK, Wang X, Li HX, Yao SC (2012) Experimental investigation of condensation in micro-fin tubes of different geometries. Exp Thermal Fluid Sci 37:19–28CrossRef Li GQ, Wu Z, Li W, Wang ZK, Wang X, Li HX, Yao SC (2012) Experimental investigation of condensation in micro-fin tubes of different geometries. Exp Thermal Fluid Sci 37:19–28CrossRef
Zurück zum Zitat Liao Q, Xin XD (1995) Experimental investigation on forced convective heat transfer and pressure drop of ethylene glycol in tubes with three-dimensional internally extended surface. Exp Therm Fluid Sci 11:343–347CrossRef Liao Q, Xin XD (1995) Experimental investigation on forced convective heat transfer and pressure drop of ethylene glycol in tubes with three-dimensional internally extended surface. Exp Therm Fluid Sci 11:343–347CrossRef
Zurück zum Zitat Liao Q, Xin XD (2000) Augmentation of convective heat transfer inside tubes with three dimensional internal extended surfaces and twisted-tape inserts. Chem Eng J 78:95–105CrossRef Liao Q, Xin XD (2000) Augmentation of convective heat transfer inside tubes with three dimensional internal extended surfaces and twisted-tape inserts. Chem Eng J 78:95–105CrossRef
Zurück zum Zitat Liao Q, Zhu X, Xin MD (2000) Augmentation of turbulent convective heat transfer in tubes with three-dimensional internal extended surfaces. J Enhanc Heat Transf 7(3):139–151CrossRef Liao Q, Zhu X, Xin MD (2000) Augmentation of turbulent convective heat transfer in tubes with three-dimensional internal extended surfaces. J Enhanc Heat Transf 7(3):139–151CrossRef
Zurück zum Zitat Lin ZM, Wang LB, Zhang YH (2014) Numerical study on heat transfer enhancement of circular tube bank fin heat exchanger with interrupted annular groove fin. Appl Therm Eng 73:1465–1476CrossRef Lin ZM, Wang LB, Zhang YH (2014) Numerical study on heat transfer enhancement of circular tube bank fin heat exchanger with interrupted annular groove fin. Appl Therm Eng 73:1465–1476CrossRef
Zurück zum Zitat Liu XY, Jensen MK (1999) Numerical investigation of turbulent flow and heat transfer in internally finned tubes. J Enhanc Heat Transf 6:105–119CrossRef Liu XY, Jensen MK (1999) Numerical investigation of turbulent flow and heat transfer in internally finned tubes. J Enhanc Heat Transf 6:105–119CrossRef
Zurück zum Zitat Liu X, Jensen MK (2001) Geometry effects on turbulent flow and heat transfer in internally finned tubes. J Heat Transf 123(6):1035–1044CrossRef Liu X, Jensen MK (2001) Geometry effects on turbulent flow and heat transfer in internally finned tubes. J Heat Transf 123(6):1035–1044CrossRef
Zurück zum Zitat Liu L, Ling X, Peng H (2013a) Complex turbulent flow and heat transfer characteristics of tubes with internal longitudinal plate-rectangle fins in EGR cooler. Appl Therm Eng 54:145–152CrossRef Liu L, Ling X, Peng H (2013a) Complex turbulent flow and heat transfer characteristics of tubes with internal longitudinal plate-rectangle fins in EGR cooler. Appl Therm Eng 54:145–152CrossRef
Zurück zum Zitat Liu L, Fan YZ, Ling X, Peng H (2013b) Flow and heat transfer characteristics of finned tube with internal and external fins in air cooler for waste heat recovery of gas-fired boiler system. Chem Eng Process 74:142–152CrossRef Liu L, Fan YZ, Ling X, Peng H (2013b) Flow and heat transfer characteristics of finned tube with internal and external fins in air cooler for waste heat recovery of gas-fired boiler system. Chem Eng Process 74:142–152CrossRef
Zurück zum Zitat Liu L, Ling X, Peng H (2015) Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler. Heat Mass Transf 1:1017–1027CrossRef Liu L, Ling X, Peng H (2015) Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler. Heat Mass Transf 1:1017–1027CrossRef
Zurück zum Zitat Luo YM, Shao SQ, Xu HB, Tian CQ, Yang HX (2014) Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier. Appl Energy 133:127–134CrossRef Luo YM, Shao SQ, Xu HB, Tian CQ, Yang HX (2014) Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier. Appl Energy 133:127–134CrossRef
Zurück zum Zitat Ma Y, Yuan Y, Liu Y (2012) Experimental investigation of heat transfer and pressure drop in serrated finned tube banks with staggered layouts. Appl Therm Eng 37(5):314–323CrossRef Ma Y, Yuan Y, Liu Y (2012) Experimental investigation of heat transfer and pressure drop in serrated finned tube banks with staggered layouts. Appl Therm Eng 37(5):314–323CrossRef
Zurück zum Zitat Mahmood GI, Ligrani PM (2002) Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number and flow structure. Int J Heat Mass Transf 45(10):2011–2020CrossRef Mahmood GI, Ligrani PM (2002) Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number and flow structure. Int J Heat Mass Transf 45(10):2011–2020CrossRef
Zurück zum Zitat Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part 1—laminar flows. J Heat Transf 115(4):881–889CrossRef Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part 1—laminar flows. J Heat Transf 115(4):881–889CrossRef
Zurück zum Zitat Marner WJ, Bergles AE (1978) Augmentation of tubeside laminar flow heat transfer by means of twisted-tape inserts, static-mixer inserts, and internally finned tubes. In: Heat transfer 1978, vol 2. Hemisphere Publishing Corporation, Washington, DC, pp 583–588 Marner WJ, Bergles AE (1978) Augmentation of tubeside laminar flow heat transfer by means of twisted-tape inserts, static-mixer inserts, and internally finned tubes. In: Heat transfer 1978, vol 2. Hemisphere Publishing Corporation, Washington, DC, pp 583–588
Zurück zum Zitat Marner WJ, Bergles AE (1985) Augmentation of highly viscous laminar tubeside heat transfer by means of a twisted tape insert and an internally finned tube. In: Shenkman SM, O’Brien JE, Habib IS, Kohler JA (eds) Advances in enhanced heat transfer, HTD, vol 43, pp 19–28 Marner WJ, Bergles AE (1985) Augmentation of highly viscous laminar tubeside heat transfer by means of a twisted tape insert and an internally finned tube. In: Shenkman SM, O’Brien JE, Habib IS, Kohler JA (eds) Advances in enhanced heat transfer, HTD, vol 43, pp 19–28
Zurück zum Zitat Marner WJ, Bergles AE (1989) Augmentation of highly viscous laminar heat transfer inside tubes with constant wall temperature. Exp Therm Fluid Sci 2:252–267CrossRef Marner WJ, Bergles AE (1989) Augmentation of highly viscous laminar heat transfer inside tubes with constant wall temperature. Exp Therm Fluid Sci 2:252–267CrossRef
Zurück zum Zitat Martinez E, Vicente W, Salinas-Vazquez M, Carvajal I, Alvarez M (2015) Numerical simulation of turbulent air flow on a single isolated finned tube module with periodic boundary conditions. Int J Therm Sci 92:58–71CrossRef Martinez E, Vicente W, Salinas-Vazquez M, Carvajal I, Alvarez M (2015) Numerical simulation of turbulent air flow on a single isolated finned tube module with periodic boundary conditions. Int J Therm Sci 92:58–71CrossRef
Zurück zum Zitat Marto PJ, Reilly DJ, Fenner JH (1979) An experimental comparison of enhanced heat transfer condenser tubing. In: Advances in enhanced heat transfer. ASME, New York, pp 1–9 Marto PJ, Reilly DJ, Fenner JH (1979) An experimental comparison of enhanced heat transfer condenser tubing. In: Advances in enhanced heat transfer. ASME, New York, pp 1–9
Zurück zum Zitat Moreno Quiben J, Cheng L, da Silva Lima RJ, Thome JR (2009a) Flow boiling in horizontal flatten tubes: part I—two-phase frictional pressure drop results and model. Int J Heat Mass Transf 52:3634–3644CrossRef Moreno Quiben J, Cheng L, da Silva Lima RJ, Thome JR (2009a) Flow boiling in horizontal flatten tubes: part I—two-phase frictional pressure drop results and model. Int J Heat Mass Transf 52:3634–3644CrossRef
Zurück zum Zitat Moreno Quiben J, Cheng L, da Silva Lima RJ, Thome JR (2009b) Flow boiling in horizontal flattened tubes: part II—flow boiling heat transfer results and model. Int J Heat Mass Transf 52:3645–3653CrossRef Moreno Quiben J, Cheng L, da Silva Lima RJ, Thome JR (2009b) Flow boiling in horizontal flattened tubes: part II—flow boiling heat transfer results and model. Int J Heat Mass Transf 52:3645–3653CrossRef
Zurück zum Zitat Mukkamala Y, Sundaresan R (2009) Single-phase flow pressure drop and heat transfer measurements in a horizontal microfin tube in the transition regime. J Enhanc Heat Transf 16(2):141–159CrossRef Mukkamala Y, Sundaresan R (2009) Single-phase flow pressure drop and heat transfer measurements in a horizontal microfin tube in the transition regime. J Enhanc Heat Transf 16(2):141–159CrossRef
Zurück zum Zitat Nandakumar K, Masliyah HH (1975) Fully developed viscous flow in internally finned tubes. Chem Eng J 10:113–120CrossRef Nandakumar K, Masliyah HH (1975) Fully developed viscous flow in internally finned tubes. Chem Eng J 10:113–120CrossRef
Zurück zum Zitat Nasr M, Akhavan-Behabadi MA, Marashi SE (2010) Performance evaluation of flattened tube in boiling heat transfer enhancement and its effect on pressure drop. Int Commun Heat Mass Transf 37:430–436CrossRef Nasr M, Akhavan-Behabadi MA, Marashi SE (2010) Performance evaluation of flattened tube in boiling heat transfer enhancement and its effect on pressure drop. Int Commun Heat Mass Transf 37:430–436CrossRef
Zurück zum Zitat Newell TA, Shah RK (2001) An assessment of refrigerant heat transfer, pressure drop and void fraction effects in microfin tubes. Int J HVAC&R Res 7(2):125–153CrossRef Newell TA, Shah RK (2001) An assessment of refrigerant heat transfer, pressure drop and void fraction effects in microfin tubes. Int J HVAC&R Res 7(2):125–153CrossRef
Zurück zum Zitat Nikuradse J (1922) Law of flows in rough pipes, Forsh Arb Ing—Wesen No 361 Translated NACATM 1292 (1950) Nikuradse J (1922) Law of flows in rough pipes, Forsh Arb Ing—Wesen No 361 Translated NACATM 1292 (1950)
Zurück zum Zitat Nishida S, Murata A, Saito H, Iwamoto K (2012) Compensation of three-dimensional heat conduction inside wall in heat transfer measurement of dimpled surface by using transient technique. J Enhanc Heat Transf 19(4):331–341CrossRef Nishida S, Murata A, Saito H, Iwamoto K (2012) Compensation of three-dimensional heat conduction inside wall in heat transfer measurement of dimpled surface by using transient technique. J Enhanc Heat Transf 19(4):331–341CrossRef
Zurück zum Zitat Nivesrangsan P, Pethkool S, Nanan K, Pimsarn M, Eiamsa-ard S (2010) Thermal performance assessment of turbulent flow through dimpled tubes. In: Proc. 14th international heat transfer conference IHTC14-22503 Washington, DC Nivesrangsan P, Pethkool S, Nanan K, Pimsarn M, Eiamsa-ard S (2010) Thermal performance assessment of turbulent flow through dimpled tubes. In: Proc. 14th international heat transfer conference IHTC14-22503 Washington, DC
Zurück zum Zitat Obot NT, Esen EB, Snell KH, Rabas TJ (1991) Pressure drop and heat transfer for spirally fluted tubes including validation of the role of transition. In: Rabas TJ, Chenoweth JM (eds) Fouling and enhancement interactions, ASME Symp. HTD, vol 164, pp 85–92 Obot NT, Esen EB, Snell KH, Rabas TJ (1991) Pressure drop and heat transfer for spirally fluted tubes including validation of the role of transition. In: Rabas TJ, Chenoweth JM (eds) Fouling and enhancement interactions, ASME Symp. HTD, vol 164, pp 85–92
Zurück zum Zitat Olson DA (1992) Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages. J Heat Transf 114:373–382CrossRef Olson DA (1992) Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages. J Heat Transf 114:373–382CrossRef
Zurück zum Zitat Panchal CB, France DM (1986) Performance tests of the spirally fluted tube heat exchanger for industrial cogeneration applications. Argonne National Laboratory Report ANL/CNSV-59 Panchal CB, France DM (1986) Performance tests of the spirally fluted tube heat exchanger for industrial cogeneration applications. Argonne National Laboratory Report ANL/CNSV-59
Zurück zum Zitat Park J, Ligrani PM (2005) Numerical predictions of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel. Numer Heat Transf Part A Appl 47(3):209–232CrossRef Park J, Ligrani PM (2005) Numerical predictions of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel. Numer Heat Transf Part A Appl 47(3):209–232CrossRef
Zurück zum Zitat Patankar SV, Chai JC (1991) Laminar natural convection in internally finned horizontal annuli. ASME Paper No. 91-HT-12 Patankar SV, Chai JC (1991) Laminar natural convection in internally finned horizontal annuli. ASME Paper No. 91-HT-12
Zurück zum Zitat Patankar SV, Ivanovic M, Sparrow EM (1979) Analysis of turbulent flow and heat transfer in internally finned tubes and annuli. ASME J Heat Transf 101:29–37CrossRef Patankar SV, Ivanovic M, Sparrow EM (1979) Analysis of turbulent flow and heat transfer in internally finned tubes and annuli. ASME J Heat Transf 101:29–37CrossRef
Zurück zum Zitat Peng H, Ling X (2011) Analysis of heat transfer and flow characteristics over serrated fins with different flow directions. Energy Convers Manag 52:826–835CrossRef Peng H, Ling X (2011) Analysis of heat transfer and flow characteristics over serrated fins with different flow directions. Energy Convers Manag 52:826–835CrossRef
Zurück zum Zitat Peng H, Ling X, Li J (2014) Performance investigation of an innovative offset strip fin arrays in compact heat exchangers. Energy Convers Manag 80:287–297CrossRef Peng H, Ling X, Li J (2014) Performance investigation of an innovative offset strip fin arrays in compact heat exchangers. Energy Convers Manag 80:287–297CrossRef
Zurück zum Zitat Peng H, Liu L, Ling X, Li Y (2016) Thermo-hydraulic performances of internally finned tube with a new type wave fin arrays. Appl Therm Eng 98:1174–1188CrossRef Peng H, Liu L, Ling X, Li Y (2016) Thermo-hydraulic performances of internally finned tube with a new type wave fin arrays. Appl Therm Eng 98:1174–1188CrossRef
Zurück zum Zitat Perera KK, Baughn JW (1994) The effect of pitch angle and Reynolds number on local heat transfer in spirally fluted tubes. In: Haas LA, Downing RS (eds) Optimal design of thermal systems and components, HTD, vol 279, pp 99–112 Perera KK, Baughn JW (1994) The effect of pitch angle and Reynolds number on local heat transfer in spirally fluted tubes. In: Haas LA, Downing RS (eds) Optimal design of thermal systems and components, HTD, vol 279, pp 99–112
Zurück zum Zitat Prakash C, Liu Y-D (1985) Analysis of laminar flow and heat transfer in the entrance region of an internally finned circular duct. J Heat Transf 107:84–91CrossRef Prakash C, Liu Y-D (1985) Analysis of laminar flow and heat transfer in the entrance region of an internally finned circular duct. J Heat Transf 107:84–91CrossRef
Zurück zum Zitat Prakash C, Patankar SV (1981) Combined free and forced convection in internally finned tubes with radial fins. J Heat Transf 103:566–572CrossRef Prakash C, Patankar SV (1981) Combined free and forced convection in internally finned tubes with radial fins. J Heat Transf 103:566–572CrossRef
Zurück zum Zitat Promvonge P, Eiamsa-Ard S (2007) Heat transfer augmentation in a circular tube using V-nozzle turbulator inserts and snail entry. Exp Therm Fluid Sci 32(1):332–340CrossRef Promvonge P, Eiamsa-Ard S (2007) Heat transfer augmentation in a circular tube using V-nozzle turbulator inserts and snail entry. Exp Therm Fluid Sci 32(1):332–340CrossRef
Zurück zum Zitat Promvonge P (2015) Thermal performance in square-duct heat exchanger with quadruple V-finned twisted tapes. Appl Therm Eng 91:298–307CrossRef Promvonge P (2015) Thermal performance in square-duct heat exchanger with quadruple V-finned twisted tapes. Appl Therm Eng 91:298–307CrossRef
Zurück zum Zitat Rabas TJ, Mitchell H (2000) Internally enhanced carbon steel tubes for ammonia chillers. Heat Transf Eng 21(5):3–16CrossRef Rabas TJ, Mitchell H (2000) Internally enhanced carbon steel tubes for ammonia chillers. Heat Transf Eng 21(5):3–16CrossRef
Zurück zum Zitat Raj R, Lakshman NS, Mukkamala Y (2015) Single phase flow heat transfer and pressure drop measurements in doubly enhanced tubes. Int J Therm Sci 88:215–227CrossRef Raj R, Lakshman NS, Mukkamala Y (2015) Single phase flow heat transfer and pressure drop measurements in doubly enhanced tubes. Int J Therm Sci 88:215–227CrossRef
Zurück zum Zitat Ravigururajan TS, Bergles AE (1995) Prandtl number influence on heat transfer enhancement in turbulent flow of water at low temperatures. J Heat Transf 117(2):276–282CrossRef Ravigururajan TS, Bergles AE (1995) Prandtl number influence on heat transfer enhancement in turbulent flow of water at low temperatures. J Heat Transf 117(2):276–282CrossRef
Zurück zum Zitat Richards DE, Grant MM, Christensen RN (1987) Turbulent flow and heat transfer inside doubly-fluted tubes. ASHRAE Trans 93(Part 2):2011–2026 Richards DE, Grant MM, Christensen RN (1987) Turbulent flow and heat transfer inside doubly-fluted tubes. ASHRAE Trans 93(Part 2):2011–2026
Zurück zum Zitat Rout SK, Thatoi DN, Acharya AK, Mishra DP (2012) CFD supported performance estimation of an internally finned tube heat exchanger under mixed convection flow. Procedia Eng 38:585–597CrossRef Rout SK, Thatoi DN, Acharya AK, Mishra DP (2012) CFD supported performance estimation of an internally finned tube heat exchanger under mixed convection flow. Procedia Eng 38:585–597CrossRef
Zurück zum Zitat Rowley GJ, Patankar SV (1984) Analysis of laminar flow and heat transfer in tubes with internal circumferential fins. Int J Heat Mass Transf 27(4):553–560CrossRef Rowley GJ, Patankar SV (1984) Analysis of laminar flow and heat transfer in tubes with internal circumferential fins. Int J Heat Mass Transf 27(4):553–560CrossRef
Zurück zum Zitat Rustum IM, Soliman HM (1988a) Experimental investigation of laminar mixed convection in tubes with longitudinal internal fins. J Heat Transf 110:366–372CrossRef Rustum IM, Soliman HM (1988a) Experimental investigation of laminar mixed convection in tubes with longitudinal internal fins. J Heat Transf 110:366–372CrossRef
Zurück zum Zitat Rustum IM, Soliman HM (1988b) Numerical analysis of laminar forced convection in the entrance region of tubes with longitudinal internal fins. J Heat Transf 110:310–313CrossRef Rustum IM, Soliman HM (1988b) Numerical analysis of laminar forced convection in the entrance region of tubes with longitudinal internal fins. J Heat Transf 110:310–313CrossRef
Zurück zum Zitat Rustum IM, Soliman HM (1990) Numerical analysis of laminar mixed convection in horizontal internally finned tubes. Int J Heat Mass Transf 33(7):1485–1496CrossRef Rustum IM, Soliman HM (1990) Numerical analysis of laminar mixed convection in horizontal internally finned tubes. Int J Heat Mass Transf 33(7):1485–1496CrossRef
Zurück zum Zitat Saad AE, Sayed AE, Mohamed EA, Mohamed MS (1997) Experimental study of turbulent flow inside a circular tube with longitudinal interrupted fins in the streamwise direction. Exp Therm Fluid Sci 15(1):1–15CrossRef Saad AE, Sayed AE, Mohamed EA, Mohamed MS (1997) Experimental study of turbulent flow inside a circular tube with longitudinal interrupted fins in the streamwise direction. Exp Therm Fluid Sci 15(1):1–15CrossRef
Zurück zum Zitat Said NMA, Trupp AC (1984) Predictions of turbulent flow and heat transfer in internally finned tubes. Chem Eng Commun 31:65–99CrossRef Said NMA, Trupp AC (1984) Predictions of turbulent flow and heat transfer in internally finned tubes. Chem Eng Commun 31:65–99CrossRef
Zurück zum Zitat San JY, Huang WC (2006) Heat transfer enhancement of transverse ribs in circular tubes with consideration of entrance effect. Int J Heat Mass Transf 49(17–18):2965–2971CrossRef San JY, Huang WC (2006) Heat transfer enhancement of transverse ribs in circular tubes with consideration of entrance effect. Int J Heat Mass Transf 49(17–18):2965–2971CrossRef
Zurück zum Zitat Sarkhi A, Nada E (2005) Characteristics of forced convection heat transfer in vertical internally finned tube. Int Commun Heat Mass 32:557–564CrossRef Sarkhi A, Nada E (2005) Characteristics of forced convection heat transfer in vertical internally finned tube. Int Commun Heat Mass 32:557–564CrossRef
Zurück zum Zitat Shih TH, Liou WW, Shabbrir A, Yang ZG, Zhu J (1995) A new k–e eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24(3):227–238MATHCrossRef Shih TH, Liou WW, Shabbrir A, Yang ZG, Zhu J (1995) A new k–e eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24(3):227–238MATHCrossRef
Zurück zum Zitat Shome B (1998) Mixed convection laminar flow and heat transfer of liquids in horizontal internally finned tubes. Numer Heat Transf Part A 33(1):65–84CrossRef Shome B (1998) Mixed convection laminar flow and heat transfer of liquids in horizontal internally finned tubes. Numer Heat Transf Part A 33(1):65–84CrossRef
Zurück zum Zitat Shome B, Jensen MK (1996a) Experimental investigation of laminar flow and heat transfer in internally finned tubes. J Enhanc Heat Transf 4:53–70CrossRef Shome B, Jensen MK (1996a) Experimental investigation of laminar flow and heat transfer in internally finned tubes. J Enhanc Heat Transf 4:53–70CrossRef
Zurück zum Zitat Shome B, Jensen MK (1996b) Numerical investigation of laminar flow and heat transfer in internally finned tubes. J Enhanc Heat Transf 4:35–52CrossRef Shome B, Jensen MK (1996b) Numerical investigation of laminar flow and heat transfer in internally finned tubes. J Enhanc Heat Transf 4:35–52CrossRef
Zurück zum Zitat Siddique M, Alhazmy M (2008) Experimental study of turbulent single-phase flow and heat transfer inside a micro-finned tube. Int J Refrig 31(2):234–241CrossRef Siddique M, Alhazmy M (2008) Experimental study of turbulent single-phase flow and heat transfer inside a micro-finned tube. Int J Refrig 31(2):234–241CrossRef
Zurück zum Zitat Soliman HM (1979) The effect of fin material on laminar heat transfer characteristics of internally finned tubes. In: Chenoweth JM, Kaellis J, Michel JW, Shenkman S (eds) Advances in enhanced heat transfer. ASME, New York, pp 95–102 Soliman HM (1979) The effect of fin material on laminar heat transfer characteristics of internally finned tubes. In: Chenoweth JM, Kaellis J, Michel JW, Shenkman S (eds) Advances in enhanced heat transfer. ASME, New York, pp 95–102
Zurück zum Zitat Soliman HM, Feingold A (1977) Analysis of fully developed laminar flow in longitudinally internally finned tubes. Chem Eng J 14:119–128CrossRef Soliman HM, Feingold A (1977) Analysis of fully developed laminar flow in longitudinally internally finned tubes. Chem Eng J 14:119–128CrossRef
Zurück zum Zitat Soliman HM, Chau TS, Trupp AC (1980) Analysis of laminar heat transfer in internally finned tubes with uniform outside wall temperature. J Heat Transf 102:598–604CrossRef Soliman HM, Chau TS, Trupp AC (1980) Analysis of laminar heat transfer in internally finned tubes with uniform outside wall temperature. J Heat Transf 102:598–604CrossRef
Zurück zum Zitat Song WM, Meng JA, Li ZX (2010) Numerical study of air-side performance of a finned flat tube heat exchanger with crossed discrete double inclined ribs. Appl Therm Eng 30(13):1797–1804CrossRef Song WM, Meng JA, Li ZX (2010) Numerical study of air-side performance of a finned flat tube heat exchanger with crossed discrete double inclined ribs. Appl Therm Eng 30(13):1797–1804CrossRef
Zurück zum Zitat Sparrow EM, Lovell B (1980) Heat transfer characteristics of an obliquely impinging circular jet. J Heat Transf 102(2):202–209CrossRef Sparrow EM, Lovell B (1980) Heat transfer characteristics of an obliquely impinging circular jet. J Heat Transf 102(2):202–209CrossRef
Zurück zum Zitat Srinivasan V, Christensen RN (1992) Experimental investigation of heat transfer and pressure drop characteristics of flow through spirally fluted tubes. Exp Therm Fluid Sci 5:820–827CrossRef Srinivasan V, Christensen RN (1992) Experimental investigation of heat transfer and pressure drop characteristics of flow through spirally fluted tubes. Exp Therm Fluid Sci 5:820–827CrossRef
Zurück zum Zitat Srinivasan V, Vafai K, Christensen RN (1994) Experimental investigation, modeling and prediction of friction factors and friction increase ratio for flow through spirally fluted tubes. J Enhanc Heat Transf 1(4):337–350CrossRef Srinivasan V, Vafai K, Christensen RN (1994) Experimental investigation, modeling and prediction of friction factors and friction increase ratio for flow through spirally fluted tubes. J Enhanc Heat Transf 1(4):337–350CrossRef
Zurück zum Zitat Suresh S, Chandrasekar M, Chandrasekar S (2001) Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Exp Thermal Fluid Sci 35:542–549CrossRef Suresh S, Chandrasekar M, Chandrasekar S (2001) Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Exp Thermal Fluid Sci 35:542–549CrossRef
Zurück zum Zitat Syed KS, Ishaq M, Iqbal Z, Hassan A (2015) Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness. Energy Convers Manag 98:69–80CrossRef Syed KS, Ishaq M, Iqbal Z, Hassan A (2015) Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness. Energy Convers Manag 98:69–80CrossRef
Zurück zum Zitat Takahashi K, Nakayama W, Kuwahara H (1988) Enhancement of forced convective heat transfer in tubes having three-dimensional spiral ribs. Heat Transf Jpn Res 17(4):12–28 Takahashi K, Nakayama W, Kuwahara H (1988) Enhancement of forced convective heat transfer in tubes having three-dimensional spiral ribs. Heat Transf Jpn Res 17(4):12–28
Zurück zum Zitat Thianpong C, Eiamsa-ard P, Wongcharee K, Eiamsa-ard S (2009) Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. Int Commun Heat Mass Transf 36:698–704CrossRef Thianpong C, Eiamsa-ard P, Wongcharee K, Eiamsa-ard S (2009) Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. Int Commun Heat Mass Transf 36:698–704CrossRef
Zurück zum Zitat Thome JR, Kattan N, Favrat D (1997) Evaporation in micro-fin tubes: a generalized prediction model. In: Proc. convective flow and pool boiling conference, Kloster Irsee (Paper VII-4) Thome JR, Kattan N, Favrat D (1997) Evaporation in micro-fin tubes: a generalized prediction model. In: Proc. convective flow and pool boiling conference, Kloster Irsee (Paper VII-4)
Zurück zum Zitat Trupp AC, Haine H (1989) Experimental investigation of turbulent mixed convection in horizontal tubes with longitudinal internal fins. In: Shah RK (ed) Heat transfer in convective flows, ASME HTD, vol 107, pp 17–25 Trupp AC, Haine H (1989) Experimental investigation of turbulent mixed convection in horizontal tubes with longitudinal internal fins. In: Shah RK (ed) Heat transfer in convective flows, ASME HTD, vol 107, pp 17–25
Zurück zum Zitat Trupp AC, Lau ACY, Said NNA, Soliman HM (1981) Turbulent flow characteristics in an internally finned tube. In: Webb RL, Carnavos TC, Park EL Jr, Hostetler KM (eds) Advances in enhanced heat transfer 1981, ASME Symp. HTD, vol 18. ASME, New York, pp 11–20 Trupp AC, Lau ACY, Said NNA, Soliman HM (1981) Turbulent flow characteristics in an internally finned tube. In: Webb RL, Carnavos TC, Park EL Jr, Hostetler KM (eds) Advances in enhanced heat transfer 1981, ASME Symp. HTD, vol 18. ASME, New York, pp 11–20
Zurück zum Zitat Wang C-C, Chen P-Y, Jang J-Y (1996) Heat transfer and friction characteristics of convex-louver fin-and-tube heat exchangers. Exp Heat Transf 9:61–78CrossRef Wang C-C, Chen P-Y, Jang J-Y (1996) Heat transfer and friction characteristics of convex-louver fin-and-tube heat exchangers. Exp Heat Transf 9:61–78CrossRef
Zurück zum Zitat Wang QW, Lin M, Zeng M, Tian L (2008a) Computational analysis of heat transfer and pressure drop performance for internally finned tubes with three different longitudinal wavy fins. Heat Mass Transf 45:147–156CrossRef Wang QW, Lin M, Zeng M, Tian L (2008a) Computational analysis of heat transfer and pressure drop performance for internally finned tubes with three different longitudinal wavy fins. Heat Mass Transf 45:147–156CrossRef
Zurück zum Zitat Wang QW, Lin M, Zeng M, Tian L (2008b) Investigation of turbulent flow and heat transfer in periodic wavy channel of internally finned tube with blocked core tube. J Heat Transf 130(6). Article No.: 061801CrossRef Wang QW, Lin M, Zeng M, Tian L (2008b) Investigation of turbulent flow and heat transfer in periodic wavy channel of internally finned tube with blocked core tube. J Heat Transf 130(6). Article No.: 061801CrossRef
Zurück zum Zitat Wang QW, Lin M, Zeng M (2009) Effect of lateral fin profiles on turbulent flow and heat transfer performance of internally finned tubes. Appl Therm Eng 29:3006–3013CrossRef Wang QW, Lin M, Zeng M (2009) Effect of lateral fin profiles on turbulent flow and heat transfer performance of internally finned tubes. Appl Therm Eng 29:3006–3013CrossRef
Zurück zum Zitat Wang Y, He Y-L, Lei Y-G, Zhang J (2010) Heat transfer and hydrodynamics of a novel dimpled tube. Exp Therm Fluid Sci 34:1273–1281CrossRef Wang Y, He Y-L, Lei Y-G, Zhang J (2010) Heat transfer and hydrodynamics of a novel dimpled tube. Exp Therm Fluid Sci 34:1273–1281CrossRef
Zurück zum Zitat Wang YG, Zhao QX, Zhou QL, Kang ZJ, Tao WQ (2013) Experimental and numerical studies on actual flue gas condensation heat transfer in a left-right symmetric internally finned tube. Int J Heat Mass Transf 64:10–20CrossRef Wang YG, Zhao QX, Zhou QL, Kang ZJ, Tao WQ (2013) Experimental and numerical studies on actual flue gas condensation heat transfer in a left-right symmetric internally finned tube. Int J Heat Mass Transf 64:10–20CrossRef
Zurück zum Zitat Wang QW, Zeng M, Ma T, Du XP, Yang JF (2014) Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Appl Energy 135:748–777CrossRef Wang QW, Zeng M, Ma T, Du XP, Yang JF (2014) Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Appl Energy 135:748–777CrossRef
Zurück zum Zitat Wang WJ, Bao Y, Wang YQ (2015) Numerical investigation of a finned-tube heat exchanger with novel longitudinal vortex generators. Appl Therm Eng 86:27–34CrossRef Wang WJ, Bao Y, Wang YQ (2015) Numerical investigation of a finned-tube heat exchanger with novel longitudinal vortex generators. Appl Therm Eng 86:27–34CrossRef
Zurück zum Zitat Wang YH, Zhang JL, Ma ZX (2017) Experimental determination of single-phase pressure drop and heat transfer in a horizontal internal helically-finned tube. Int J Heat Mass Transf 104:240–246CrossRef Wang YH, Zhang JL, Ma ZX (2017) Experimental determination of single-phase pressure drop and heat transfer in a horizontal internal helically-finned tube. Int J Heat Mass Transf 104:240–246CrossRef
Zurück zum Zitat Watkinson AP, Miletti PL, Tarassoff p (1973) Turbulent heat transfer and pressure drop in internally finned tubes. AIChE Symp Ser 69(131):94–103 Watkinson AP, Miletti PL, Tarassoff p (1973) Turbulent heat transfer and pressure drop in internally finned tubes. AIChE Symp Ser 69(131):94–103
Zurück zum Zitat Watkinson AP, Miletti PL, Kubanek GR (1975a) Heat transfer and pressure drop of internally finned tubes in laminar oil flow. ASME Paper 75-HT-41 Watkinson AP, Miletti PL, Kubanek GR (1975a) Heat transfer and pressure drop of internally finned tubes in laminar oil flow. ASME Paper 75-HT-41
Zurück zum Zitat Watkinson AP, Miletti PL, Kubanek GR (1975b) Heat transfer and pressure drop of internally finned tubes in turbulent air flow. ASHRAE Trans 81(Part 1):330–349 Watkinson AP, Miletti PL, Kubanek GR (1975b) Heat transfer and pressure drop of internally finned tubes in turbulent air flow. ASHRAE Trans 81(Part 1):330–349
Zurück zum Zitat Webb RL (1981) The use of enhanced heat transfer surface geometries in condensers. In: Marto PJ, Nunn RH (eds) Power condenser heat transfer technology: computer modeling, design, fouling. Hemisphere Pub. Corp., Washington, DC, pp 287–324 Webb RL (1981) The use of enhanced heat transfer surface geometries in condensers. In: Marto PJ, Nunn RH (eds) Power condenser heat transfer technology: computer modeling, design, fouling. Hemisphere Pub. Corp., Washington, DC, pp 287–324
Zurück zum Zitat Webb RL, Iyengar A (2001) Oval finned tube condenser and design pressure limits. J Enhanc Heat Transf 8:147–158CrossRef Webb RL, Iyengar A (2001) Oval finned tube condenser and design pressure limits. J Enhanc Heat Transf 8:147–158CrossRef
Zurück zum Zitat Webb RL, Kim NH (2005) Principles of enhanced heat transfer, 2nd edn. Taylor & Francis, London Webb RL, Kim NH (2005) Principles of enhanced heat transfer, 2nd edn. Taylor & Francis, London
Zurück zum Zitat Webb RL, Scott MJ (1980) A parametric analysis of the performance of internally finned tubes for heat exchanger application. J Heat Transf 102(1):38–43CrossRef Webb RL, Scott MJ (1980) A parametric analysis of the performance of internally finned tubes for heat exchanger application. J Heat Transf 102(1):38–43CrossRef
Zurück zum Zitat Webb RL, Eckert ERG, Goldstein R (1971) Heat transfer and friction in tubes with repeated-rib roughness. Int J Heat Mass Transf 14(4):601–617CrossRef Webb RL, Eckert ERG, Goldstein R (1971) Heat transfer and friction in tubes with repeated-rib roughness. Int J Heat Mass Transf 14(4):601–617CrossRef
Zurück zum Zitat Webb RL, Narayanamurthy R, Thors P (2000) Heat transfer and friction characteristics of internal helical-rib roughness. J Heat Transf 122(1):134–142CrossRef Webb RL, Narayanamurthy R, Thors P (2000) Heat transfer and friction characteristics of internal helical-rib roughness. J Heat Transf 122(1):134–142CrossRef
Zurück zum Zitat Wilson MJ, Newell TA, Chato JC, Infante Ferreira CA (2003) Refrigerant charge, pressure drop and condensation heat transfer in flattened tubes. Int J Refrig 26:442–451CrossRef Wilson MJ, Newell TA, Chato JC, Infante Ferreira CA (2003) Refrigerant charge, pressure drop and condensation heat transfer in flattened tubes. Int J Refrig 26:442–451CrossRef
Zurück zum Zitat Wolfstein M (1988) The velocity and temperature distribution of one dimensional flow with turbulence augmentation and pressure gradient. Int J Heat Mass Transf 12:301–318CrossRef Wolfstein M (1988) The velocity and temperature distribution of one dimensional flow with turbulence augmentation and pressure gradient. Int J Heat Mass Transf 12:301–318CrossRef
Zurück zum Zitat Wu Z, Wu Y, Sunden B, Li W (2013) Convective vaporization in micro-fin tubes of different geometries. Exp Thermal Fluid Sci 44:398–408CrossRef Wu Z, Wu Y, Sunden B, Li W (2013) Convective vaporization in micro-fin tubes of different geometries. Exp Thermal Fluid Sci 44:398–408CrossRef
Zurück zum Zitat Yakut K, Sahin B, Canbazoglu S (2004) Performance and flow-induced vibration characteristics for conical-ring turbulators. Appl Energy 79(1):65–76CrossRef Yakut K, Sahin B, Canbazoglu S (2004) Performance and flow-induced vibration characteristics for conical-ring turbulators. Appl Energy 79(1):65–76CrossRef
Zurück zum Zitat Yampolsky JS (1983) Spirally fluted tubing for enhanced heat transfer. In: Taborek J, Hewitt GF, Afgan N (eds) Heat exchangers-theory and practice. Hemisphere Publishing Corp, Washington, DC, pp 945–952 Yampolsky JS (1983) Spirally fluted tubing for enhanced heat transfer. In: Taborek J, Hewitt GF, Afgan N (eds) Heat exchangers-theory and practice. Hemisphere Publishing Corp, Washington, DC, pp 945–952
Zurück zum Zitat Yu B, Nie JH, Wang QW, Tao WQ (1999) Experimental study on the pressure drop and heat transfer characteristics of tubes with internal wave-like longitudinal fins. Heat Mass Transf 35:65–73CrossRef Yu B, Nie JH, Wang QW, Tao WQ (1999) Experimental study on the pressure drop and heat transfer characteristics of tubes with internal wave-like longitudinal fins. Heat Mass Transf 35:65–73CrossRef
Zurück zum Zitat Yu B, Tao WQ (2004) Pressure drop and heat transfer characteristics of turbulent flow in annular tubes with internal wave-like longitudinal fins. Heat Mass Transf 40:643–651CrossRef Yu B, Tao WQ (2004) Pressure drop and heat transfer characteristics of turbulent flow in annular tubes with internal wave-like longitudinal fins. Heat Mass Transf 40:643–651CrossRef
Zurück zum Zitat Yun R, Kim Y, Seo K, Kim HY (2002) A generalized correlation for evaporation heat transfer of refrigerants in micro-fin tubes. Int J Heat Mass Transf 45:2003–2010CrossRef Yun R, Kim Y, Seo K, Kim HY (2002) A generalized correlation for evaporation heat transfer of refrigerants in micro-fin tubes. Int J Heat Mass Transf 45:2003–2010CrossRef
Zurück zum Zitat Zdaniuk GJ, Luck R, Chamra LM (2008) Linear correlation of heat transfer and friction in helically-finned tubes using five simple groups of parameters. Int J Heat Mass Transf 51(13–14):3548–3555MATHCrossRef Zdaniuk GJ, Luck R, Chamra LM (2008) Linear correlation of heat transfer and friction in helically-finned tubes using five simple groups of parameters. Int J Heat Mass Transf 51(13–14):3548–3555MATHCrossRef
Zurück zum Zitat Zeitoun O, Hegazy AS (2004) Heat transfer for laminar flow in internally finned pipes with different fin heights and uniform wall temperature. Heat Mass Transf 40:253–259CrossRef Zeitoun O, Hegazy AS (2004) Heat transfer for laminar flow in internally finned pipes with different fin heights and uniform wall temperature. Heat Mass Transf 40:253–259CrossRef
Zurück zum Zitat Zhang HY, Ebadian MA (1992a) Heat transfer in the entrance region of semicircular ducts with internal fins. J Thermophys Heat Transf 6:296–301CrossRef Zhang HY, Ebadian MA (1992a) Heat transfer in the entrance region of semicircular ducts with internal fins. J Thermophys Heat Transf 6:296–301CrossRef
Zurück zum Zitat Zhang HY, Ebadian MA (1992b) The influence of internal fins on mixed convection inside a semicircular duct. In: Pate MB, Jensen MK (eds) Enhanced heat transfer. ASME Symp. HTD, vol 202. ASME, New York, pp 17–24 Zhang HY, Ebadian MA (1992b) The influence of internal fins on mixed convection inside a semicircular duct. In: Pate MB, Jensen MK (eds) Enhanced heat transfer. ASME Symp. HTD, vol 202. ASME, New York, pp 17–24
Zurück zum Zitat Zhang HG, Wang EH, Fan BY (2013) Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery. Energy Convers Manag 65:438–447CrossRef Zhang HG, Wang EH, Fan BY (2013) Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery. Energy Convers Manag 65:438–447CrossRef
Metadaten
Titel
Internally Finned Tubes and Spirally Fluted Tubes
verfasst von
Sujoy Kumar Saha
Hrishiraj Ranjan
Madhu Sruthi Emani
Anand Kumar Bharti
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-20748-9_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.