Skip to main content
Erschienen in: Metallurgist 9-10/2020

31.01.2020

Interphase Distribution of Elements during Two-Stage High Temperature Electrochemical Treatment of Lead-Bismuth Alloys

verfasst von: E. N. Selivanov, A. M. Klyushnikov, A. A. Korolev, S. K. Plekhanov, S. A. Krayukhin, K. V. Pikulin, S. V. Sergeeva

Erschienen in: Metallurgist | Ausgabe 9-10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experimental simulation of the separation of the components of lead-bismuth alloy in a chloride melt is conducted. Using X-ray fluorescence, emission spectral and X-ray powder diffraction analyses, the interphase distribution of elements is estimated during high-temperature (550 С) electrochemical treatment of lead-bismuth alloys in molten NaCl–KCl–PbCl2 –ZnCl2 . Regimes of the two-stage process are substantiated when in the first stage (U = 7.4–15.6 V, ia = 0.5 A/cm2 ) the bismuth content in anode alloy is brought to 48.4 wt.% and then (U = 4.9-13.5 V, ia = 0.3-0.4 A/cm2 ) crude bismuth is separated containing, wt.%: 93.6 Bi, 4.1 Pb, 0.086 Ag, 0.0066 As, 0.006 Sb, 0.0013 Cu, 0.001 Sn, and 0.0014 Zn. The final anode product contains 93% bismuth and 0.4% lead from the original alloy. Crude lead obtained at the cathode contains, wt.%: 95.8–96.3 Pb, 0.007–0.06 Bi, 0.002–2.9 Na, 1.2–3.6 Zn, and ≤ 0.1 Cu. Sublimation of chlorides saturated with lead and action of oxygen from the air are the reasons for heterogenization of the electrolyte that gives rise to an increase in working voltage in the electrolytic cell. The relatively low anodic and cathodic current efficiency (50 and 38% respectively) are associated with electrical recharging of polyvalent ions on electrodes. Use of technology for treating intermediate products and waste refining will make it possible to organize production of crude bismuth from mineral and secondary lead-containing raw materials. Prospects for improving the efficiency of the process are associated with the sealing of electrolyzers and preliminary pyrometallurgical refining of lead-bismuth alloys from impurities (Cu, Zn, Sb, As, and Sn).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. V. Naumov, “Review of the world bismuth market,” Izv. Vuzov. Tsvet. Met., No. 1, 13–19 (2007). A. V. Naumov, “Review of the world bismuth market,” Izv. Vuzov. Tsvet. Met., No. 1, 13–19 (2007).
2.
Zurück zum Zitat I. R. Polyvyannyi, A. D. Ablanov, and S. A. Batyrbekova, Bismuth [in Russian], Nauka, Alma-Ata (1989). I. R. Polyvyannyi, A. D. Ablanov, and S. A. Batyrbekova, Bismuth [in Russian], Nauka, Alma-Ata (1989).
3.
Zurück zum Zitat Dian-kun Lu, Zhe-nan Jin, Yong-feng Chang, Shu-chen Sun, “Mechanism of debismuthizing with calcium and magnesium,” Trans. Nonferrous Metals Society of China, 23, 1501–1505 (2013).CrossRef Dian-kun Lu, Zhe-nan Jin, Yong-feng Chang, Shu-chen Sun, “Mechanism of debismuthizing with calcium and magnesium,” Trans. Nonferrous Metals Society of China, 23, 1501–1505 (2013).CrossRef
4.
Zurück zum Zitat V. A. Krenev, N. F. Drobot, ans S. V. Fomichev, “Bismuth: Reserves, applications, and the world market,” Theoretical Foundations of Chemical Engineering, 49, No. 4, 532–535 (2015). V. A. Krenev, N. F. Drobot, ans S. V. Fomichev, “Bismuth: Reserves, applications, and the world market,” Theoretical Foundations of Chemical Engineering, 49, No. 4, 532–535 (2015).
5.
Zurück zum Zitat J. Kruger, P. Winkler, E. Luderitz, et al., Bismuth, Bismuth Alloys and Bismuth Compounds, Ulmann’s Encyclopedia of Industrial Chemistry (2012) Wiley–VCH Verlag Gmbh & Co, KGaA, Weinhaim J. Kruger, P. Winkler, E. Luderitz, et al., Bismuth, Bismuth Alloys and Bismuth Compounds, Ulmann’s Encyclopedia of Industrial Chemistry (2012) Wiley–VCH Verlag Gmbh & Co, KGaA, Weinhaim
6.
Zurück zum Zitat K. Onjebuoboh Funsho, “Bismuth – production, properties, and applications,” JOM, 44, No. 4, 46–49 (1992). K. Onjebuoboh Funsho, “Bismuth – production, properties, and applications,” JOM, 44, No. 4, 46–49 (1992).
7.
Zurück zum Zitat Syao Veisi, Syu Bin, Li Zhiven, and Zhao Sinsheng, “Preparation f high purity lead by electrolysis from low quality lead raw material,” in: Proc. Second Congr. “Nonferrous Metals-2-10” [in Russian], OOO Verso, Krasnoyarsk (2010). Syao Veisi, Syu Bin, Li Zhiven, and Zhao Sinsheng, “Preparation f high purity lead by electrolysis from low quality lead raw material,” in: Proc. Second Congr. “Nonferrous Metals-2-10” [in Russian], OOO Verso, Krasnoyarsk (2010).
8.
Zurück zum Zitat A. G. Berezhnaya and M. A. Kazl’mina, “Effect of alkali solution concentration on anodic behavior of lead-bismuth alloys,” Korroz. Metarialy Zashchita, No. 1, 24–30 (2017). A. G. Berezhnaya and M. A. Kazl’mina, “Effect of alkali solution concentration on anodic behavior of lead-bismuth alloys,” Korroz. Metarialy Zashchita, No. 1, 24–30 (2017).
9.
Zurück zum Zitat P. K. Wrona and Z. Galus, “Electrode processes of bismuth in weakly acidic, neutral and alkaline solutions,” Electrochimica Acta, 25, 419–428 (1980).CrossRef P. K. Wrona and Z. Galus, “Electrode processes of bismuth in weakly acidic, neutral and alkaline solutions,” Electrochimica Acta, 25, 419–428 (1980).CrossRef
10.
Zurück zum Zitat A. G. Berezhnaya, M. A. Kaz’mina, and V. V. Ékilik, “Anodic behavior of bismuth, lead and their alloys in acid chloride media,” Korroz. Metarialy Zashchita, No. 2, 1–5 (2015). A. G. Berezhnaya, M. A. Kaz’mina, and V. V. Ékilik, “Anodic behavior of bismuth, lead and their alloys in acid chloride media,” Korroz. Metarialy Zashchita, No. 2, 1–5 (2015).
11.
Zurück zum Zitat Yu. V. Shevtsov and N. F. Beizel’, “Lead distribution in products of complex bismuth refining,” Neorgan. Materialy., 47, No. 2, 179–182 (2011). Yu. V. Shevtsov and N. F. Beizel’, “Lead distribution in products of complex bismuth refining,” Neorgan. Materialy., 47, No. 2, 179–182 (2011).
12.
Zurück zum Zitat M. Zetroubi, M. Сhatelut, and O. Vittori, “Electrochemical recovery of bismuth in acidic media using a niobium electrode,” Hydrometallurgy, 34, 109–118 (1993.)CrossRef M. Zetroubi, M. Сhatelut, and O. Vittori, “Electrochemical recovery of bismuth in acidic media using a niobium electrode,” Hydrometallurgy, 34, 109–118 (1993.)CrossRef
13.
Zurück zum Zitat N. Papageorgiou and M. A. Skyllas-Kazacos, “Study of the hydrogen evolution reaction on lead bismuth alloys in sulfuric acid solution,” Electrochimica Acta, 37, No. 2, 269–276 (1992). N. Papageorgiou and M. A. Skyllas-Kazacos, “Study of the hydrogen evolution reaction on lead bismuth alloys in sulfuric acid solution,” Electrochimica Acta, 37, No. 2, 269–276 (1992).
14.
Zurück zum Zitat Y. M. Wu, W. S. Li, X. M. Long, et al., “Effect of bismuth on hydrogen evolution reaction on lead in sulfuric acid solution,” J. of Power Sources, 144, 338–345 (2005).CrossRef Y. M. Wu, W. S. Li, X. M. Long, et al., “Effect of bismuth on hydrogen evolution reaction on lead in sulfuric acid solution,” J. of Power Sources, 144, 338–345 (2005).CrossRef
15.
Zurück zum Zitat S. Li, H. Y. Chen, M. C. Tang, et al., “Electrochemical behavior of lead alloys in sulfuric and phosphoric acid electrolyte,” J. of Power Sources, 158, 914–919 (2006).CrossRef S. Li, H. Y. Chen, M. C. Tang, et al., “Electrochemical behavior of lead alloys in sulfuric and phosphoric acid electrolyte,” J. of Power Sources, 158, 914–919 (2006).CrossRef
16.
Zurück zum Zitat A. G. Morachevskii, Z. I. Vaisgant, and A. I. Demidov, Electrochemistry of Lead in Ionic Melts [in Russian], Khimiya, St. Petersburg (1994). A. G. Morachevskii, Z. I. Vaisgant, and A. I. Demidov, Electrochemistry of Lead in Ionic Melts [in Russian], Khimiya, St. Petersburg (1994).
17.
Zurück zum Zitat A. G. Morachevskii, Lead Recycling Physical Chemistry [in Russian], Izd. Politekh. Inst., St. Petersburg (2009). A. G. Morachevskii, Lead Recycling Physical Chemistry [in Russian], Izd. Politekh. Inst., St. Petersburg (2009).
18.
Zurück zum Zitat Yu. P. Khalimullina, Yu. P. Zaikov, P. A. Arkhipov, et al., “Equilibrium potentials of Pb-Bi alloys in molten KCl-PbCl2,” Rasplavy, No. 5, 34–43 (2010). Yu. P. Khalimullina, Yu. P. Zaikov, P. A. Arkhipov, et al., “Equilibrium potentials of Pb-Bi alloys in molten KCl-PbCl2,” Rasplavy, No. 5, 34–43 (2010).
19.
Zurück zum Zitat P. A. Arkhipov, Yu. P. Khalimullina, A. S. Kholkina, and N. G. Molchanova, “Preparation of lead using molten chloride electrolytes,” Tsvet. Met., No. 11, 8–12 (2017).CrossRef P. A. Arkhipov, Yu. P. Khalimullina, A. S. Kholkina, and N. G. Molchanova, “Preparation of lead using molten chloride electrolytes,” Tsvet. Met., No. 11, 8–12 (2017).CrossRef
20.
Zurück zum Zitat Yu. P. Khalimullina, Yu. P. Zaikov, P. A. Arkhipov, et al., “Thermodynamics characteristics of Pb-Bi alloys in molten KCl-PbCl2,” Izv. Vuzov, Tsvet. Met., No. 5, 3–9 (2011). Yu. P. Khalimullina, Yu. P. Zaikov, P. A. Arkhipov, et al., “Thermodynamics characteristics of Pb-Bi alloys in molten KCl-PbCl2,” Izv. Vuzov, Tsvet. Met., No. 5, 3–9 (2011).
21.
Zurück zum Zitat A. O. Teut and V. V. Klimenko, “Technology for preparing saleable bismuth from lead production semi-products,” Tsvet. Met., No. 5, 32–36 (2012). A. O. Teut and V. V. Klimenko, “Technology for preparing saleable bismuth from lead production semi-products,” Tsvet. Met., No. 5, 32–36 (2012).
22.
Zurück zum Zitat M. V. Smirnov, Electrode Potentials in Molten Chlorides [in Russian], Nauka, Moscow (1973). M. V. Smirnov, Electrode Potentials in Molten Chlorides [in Russian], Nauka, Moscow (1973).
23.
Zurück zum Zitat Yu. K. Delimarskii, and O. G. Zarubitskii, “Possibilities and prospects for electrolysis methods for molten slats in heavy nonferrous metallurgy,” Ionnye Rasplavy, No. 3, 22–40 (1975). Yu. K. Delimarskii, and O. G. Zarubitskii, “Possibilities and prospects for electrolysis methods for molten slats in heavy nonferrous metallurgy,” Ionnye Rasplavy, No. 3, 22–40 (1975).
Metadaten
Titel
Interphase Distribution of Elements during Two-Stage High Temperature Electrochemical Treatment of Lead-Bismuth Alloys
verfasst von
E. N. Selivanov
A. M. Klyushnikov
A. A. Korolev
S. K. Plekhanov
S. A. Krayukhin
K. V. Pikulin
S. V. Sergeeva
Publikationsdatum
31.01.2020
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 9-10/2020
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-00928-7

Weitere Artikel der Ausgabe 9-10/2020

Metallurgist 9-10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.