Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Introduction: Additive/3D Printing Materials—Filaments, Functionalized Inks, and Powders

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) is usually defined as the process of joining materials to make objects from 3D model data, typically layer upon layer, as opposed to subtractive manufacturing methodologies, which remove material (American Society for Testing and Materials, ASTM). We refer the reader to the recent overview article by (Huang et al. in Journal of manufacturing science and engineering 137:014001–1, 2015) [1] on the wide array of activities in the manufacturing community in this area.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For reviews of optical coatings and photonics, see Nakanishi et al. [4] and Maier and Atwater [15], for biosensors, see Alivisatos [16], for catalysts, see Haruta [17], and for MEMS applications, see Fuller et al. [5] and Ho et al. [18].
 
2
A closely related method, electron beam melting, fully melts the material and produces dense solids that are void-free.
 
3
There are a variety of other techniques that may be involved in an overall additive manufacturing processes, such as: (a) electron beam melting, which is a process by where powder is bonded together layer per layer with an electron beam in a high vacuum, (b) aerosol jetting, which consists of utilizing streams of atomized particles at high velocities toward a substrate, and (c) inkjet printing, which works by projecting small droplets of ink toward a substrate through a small orifice by pressure, heat, and vibration. The deposited material is then heated by UV light or other means to rapidly dry.
 
Literatur
1.
Zurück zum Zitat Huang, Y., Leu, M.C., Mazumdar, J., Donmez, A.: Additive manufacturing: current state, future potential, gaps and needs, and recommendation. J. Manufact. Sci. Eng 137, 014001–1 (2015)CrossRef Huang, Y., Leu, M.C., Mazumdar, J., Donmez, A.: Additive manufacturing: current state, future potential, gaps and needs, and recommendation. J. Manufact. Sci. Eng 137, 014001–1 (2015)CrossRef
2.
Zurück zum Zitat Hull, C.: Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330, (1984) Hull, C.: Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330, (1984)
3.
Zurück zum Zitat Gamota, D., Brazis, P., Kalyanasundaram, K., Zhang, J.: Printed Organic and Molecular Electronics. Kluwer Academic Publishers, New York (2004)CrossRef Gamota, D., Brazis, P., Kalyanasundaram, K., Zhang, J.: Printed Organic and Molecular Electronics. Kluwer Academic Publishers, New York (2004)CrossRef
4.
Zurück zum Zitat Nakanishi, H., Bishop, K.J.M., Kowalczyk, B., Nitzan, A., Weiss, E.A., Tretiakov, K.V., Apodaca, M.M., Klajn, R., Stoddart, J.F., Grzybowski, B.A.: Photoconductance and inverse photoconductance in thin films of functionalized metal nanoparticles. Nature 460, 371–375 (2009) Nakanishi, H., Bishop, K.J.M., Kowalczyk, B., Nitzan, A., Weiss, E.A., Tretiakov, K.V., Apodaca, M.M., Klajn, R., Stoddart, J.F., Grzybowski, B.A.: Photoconductance and inverse photoconductance in thin films of functionalized metal nanoparticles. Nature 460, 371–375 (2009)
5.
Zurück zum Zitat Fuller, S.B., Wilhelm, E.J., Jacobson, J.M.: Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11, 54–60 (2002)CrossRef Fuller, S.B., Wilhelm, E.J., Jacobson, J.M.: Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11, 54–60 (2002)CrossRef
6.
Zurück zum Zitat Samarasinghe, S.R., Pastoriza-Santos, I., Edirisinghe, M.J., Reece, M.J., Liz-Marzan, L.M.: Printing Gold Nanoparticles with an Electrohydrodynamic Direct Write Device. Gold Bulletin. 39, 48–53 (2006)CrossRef Samarasinghe, S.R., Pastoriza-Santos, I., Edirisinghe, M.J., Reece, M.J., Liz-Marzan, L.M.: Printing Gold Nanoparticles with an Electrohydrodynamic Direct Write Device. Gold Bulletin. 39, 48–53 (2006)CrossRef
7.
Zurück zum Zitat Ahmad, Z., Rasekh, M., Edirisinghe, M.: Electrohydrodynamic direct writing of biomedical polymers and composites. Macromol. Mater. Eng. 295, 315–319 (2010)CrossRef Ahmad, Z., Rasekh, M., Edirisinghe, M.: Electrohydrodynamic direct writing of biomedical polymers and composites. Macromol. Mater. Eng. 295, 315–319 (2010)CrossRef
8.
Zurück zum Zitat Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)CrossRef Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)CrossRef
9.
Zurück zum Zitat Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T.S., Sirringhaus, H.: Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 3, 171–176 (2004)CrossRef Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T.S., Sirringhaus, H.: Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 3, 171–176 (2004)CrossRef
10.
Zurück zum Zitat Huang, D., Liao, F., Molesa, S., Redinger, D., Subramanian, V.: Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150(7), G412–417 (2003)CrossRef Huang, D., Liao, F., Molesa, S., Redinger, D., Subramanian, V.: Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150(7), G412–417 (2003)CrossRef
11.
Zurück zum Zitat Choi, S., Park, I., Hao, Z., Holman, H.Y., Pisano, A.P., Zohdi, T.I.: Ultra-fast self-assembly of micro-scale particles by open channel flow. Langmuir 26(7), 4661–4667 (2010)CrossRef Choi, S., Park, I., Hao, Z., Holman, H.Y., Pisano, A.P., Zohdi, T.I.: Ultra-fast self-assembly of micro-scale particles by open channel flow. Langmuir 26(7), 4661–4667 (2010)CrossRef
12.
Zurück zum Zitat Choi, S., Stassi, S., Pisano, A.P., Zohdi, T.I.: Coffee-ring effect-based three dimensional patterning of micro, nanoparticle assembly with a single droplet. Langmuir 26(14), 11690–11698 (2010)CrossRef Choi, S., Stassi, S., Pisano, A.P., Zohdi, T.I.: Coffee-ring effect-based three dimensional patterning of micro, nanoparticle assembly with a single droplet. Langmuir 26(14), 11690–11698 (2010)CrossRef
13.
Zurück zum Zitat Choi, S., Jamshidi, A., Seok, T.J., Zohdi, T.I., Wu., M.C., Pisano, A.P.: Fast, High-throughput creation of size-tunable micro, nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6), 3102–11 (2012) Choi, S., Jamshidi, A., Seok, T.J., Zohdi, T.I., Wu., M.C., Pisano, A.P.: Fast, High-throughput creation of size-tunable micro, nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6), 3102–11 (2012)
14.
Zurück zum Zitat Choi, S., Pisano, A.P., Zohdi, T.I.: An Analysis of Evaporative Self-Assembly of Micro Particles in Printed Picoliter Suspension Droplets. J. Thin Solid Films 537(30), 180–189 (2013)CrossRef Choi, S., Pisano, A.P., Zohdi, T.I.: An Analysis of Evaporative Self-Assembly of Micro Particles in Printed Picoliter Suspension Droplets. J. Thin Solid Films 537(30), 180–189 (2013)CrossRef
15.
Zurück zum Zitat Maier, S.A., Atwater, H.A.: Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005(98), 011101 (2005)CrossRef Maier, S.A., Atwater, H.A.: Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005(98), 011101 (2005)CrossRef
16.
Zurück zum Zitat Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22(1), 47–52 (2004)CrossRef Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22(1), 47–52 (2004)CrossRef
17.
Zurück zum Zitat Haruta, M.: Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6(3), 102–115 (2002)CrossRef Haruta, M.: Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6(3), 102–115 (2002)CrossRef
18.
Zurück zum Zitat Ho, C., Steingart, D., Salminent, J., Sin, W., Rantala, T., Evans, J., Wright, P.: Dispenser printed electrochemical capacitors for power management of millimeter scale lithium ion polymer microbatteries for wireless sensors. In: 6th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2006), Berkeley, CA (2006) Ho, C., Steingart, D., Salminent, J., Sin, W., Rantala, T., Evans, J., Wright, P.: Dispenser printed electrochemical capacitors for power management of millimeter scale lithium ion polymer microbatteries for wireless sensors. In: 6th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2006), Berkeley, CA (2006)
19.
Zurück zum Zitat Winslow, W.M.: Method and means for translating electrical impulses into mechanical force. U.S. Patent 2,417,850, (1947) Winslow, W.M.: Method and means for translating electrical impulses into mechanical force. U.S. Patent 2,417,850, (1947)
20.
Zurück zum Zitat Winslow, W.M.: Induced fibration of suspensions. J. Appl. Phys. 20(12), 1137–1140 (1949)CrossRef Winslow, W.M.: Induced fibration of suspensions. J. Appl. Phys. 20(12), 1137–1140 (1949)CrossRef
21.
Zurück zum Zitat Ridley, B.A., Nivi, B., Jacobson, J.M.: All-inorganic field effect transistors fabricated by printing. Science 286, 746–749 (1999)CrossRef Ridley, B.A., Nivi, B., Jacobson, J.M.: All-inorganic field effect transistors fabricated by printing. Science 286, 746–749 (1999)CrossRef
22.
Zurück zum Zitat Park, J.-U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M., Rogers, J.A.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007)CrossRef Park, J.-U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M., Rogers, J.A.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007)CrossRef
23.
Zurück zum Zitat Sevostianov, I., Kachanov, M.: Modeling of the anisotropic elastic properties of plasma-sprayed coatings in relation to their microstructure. Acta Mater. 48(6), 1361–1370 (2000)CrossRef Sevostianov, I., Kachanov, M.: Modeling of the anisotropic elastic properties of plasma-sprayed coatings in relation to their microstructure. Acta Mater. 48(6), 1361–1370 (2000)CrossRef
24.
Zurück zum Zitat Sevostianov, I., Kachanov, M.: Thermal conductivity of plasma sprayed coatings in relation to their microstructure. J. Therm. Spray Technol. 9(4), 478–482 (2001)CrossRef Sevostianov, I., Kachanov, M.: Thermal conductivity of plasma sprayed coatings in relation to their microstructure. J. Therm. Spray Technol. 9(4), 478–482 (2001)CrossRef
25.
Zurück zum Zitat Sevostianov, I., Kachanov, M.: Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations. Mater. Sci. Eng.-A 297, 235–243 (2001)CrossRef Sevostianov, I., Kachanov, M.: Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations. Mater. Sci. Eng.-A 297, 235–243 (2001)CrossRef
26.
Zurück zum Zitat Dwivedi, G., Wentz, T., Sampath, S., Nakamura, T.: Assessing process and coating reliability through monitoring of process and design relevant coating properties. J. Therm. Spray Technol. 19, 695–712 (2010)CrossRef Dwivedi, G., Wentz, T., Sampath, S., Nakamura, T.: Assessing process and coating reliability through monitoring of process and design relevant coating properties. J. Therm. Spray Technol. 19, 695–712 (2010)CrossRef
27.
Zurück zum Zitat Liu, Y., Nakamura, T., Dwivedi, G., Valarezo, A., Sampath, S.: Anelastic behavior of plasma sprayed zirconia coatings. J. Am. Ceram. Soc. 91, 4036–4043 (2008)CrossRef Liu, Y., Nakamura, T., Dwivedi, G., Valarezo, A., Sampath, S.: Anelastic behavior of plasma sprayed zirconia coatings. J. Am. Ceram. Soc. 91, 4036–4043 (2008)CrossRef
28.
Zurück zum Zitat Liu, Y., Nakamura, T., Srinivasan, V., Vaidya, A., Gouldstone, A., Sampath, S.: Nonlinear elastic properties of plasma sprayed zirconia coatings and associated relationships to processing conditions. Acta mater. 55, 4667–4678 (2007)CrossRef Liu, Y., Nakamura, T., Srinivasan, V., Vaidya, A., Gouldstone, A., Sampath, S.: Nonlinear elastic properties of plasma sprayed zirconia coatings and associated relationships to processing conditions. Acta mater. 55, 4667–4678 (2007)CrossRef
29.
Zurück zum Zitat Nakamura, T., Liu, Y.: Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis. Int. J. Solids Struct. 44, 1990–2009 (2007)CrossRefMATH Nakamura, T., Liu, Y.: Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis. Int. J. Solids Struct. 44, 1990–2009 (2007)CrossRefMATH
30.
Zurück zum Zitat Nakamura, T., Qian, G., Berndt, C.C.: Effects of pores on mechanical properties of plasma sprayed ceramic coatings. J. Am. Ceram. Soc. 83, 578–584 (2000)CrossRef Nakamura, T., Qian, G., Berndt, C.C.: Effects of pores on mechanical properties of plasma sprayed ceramic coatings. J. Am. Ceram. Soc. 83, 578–584 (2000)CrossRef
31.
Zurück zum Zitat Qian, G., Nakamura, T., Berndt, C.C.: Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mech. Mater. 27, 91–110 (1998)CrossRef Qian, G., Nakamura, T., Berndt, C.C.: Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mech. Mater. 27, 91–110 (1998)CrossRef
32.
Zurück zum Zitat Martin, P.: Handbook of deposition technologies for films and coatings. 3rd (Ed.) Elsevier (2009) Martin, P.: Handbook of deposition technologies for films and coatings. 3rd (Ed.) Elsevier (2009)
33.
Zurück zum Zitat Martin, P.: Introduction to surface engineering and functionally engineered materials. Scrivener and Elsevier (2011) Martin, P.: Introduction to surface engineering and functionally engineered materials. Scrivener and Elsevier (2011)
34.
Zurück zum Zitat Householder, R.: Molding Process. U.S. Patent 4,247,508, (1979) Householder, R.: Molding Process. U.S. Patent 4,247,508, (1979)
35.
Zurück zum Zitat Deckard, C.: Method and apparatus for producing parts by selective sinterin. U.S. Patent 4,863,538, (1986) Deckard, C.: Method and apparatus for producing parts by selective sinterin. U.S. Patent 4,863,538, (1986)
36.
Zurück zum Zitat Demko, M., Choi, S., Zohdi, T.I., Pisano, A.P.: High resolution patterning of nanoparticles by evaporative self-assembly enabled by in-situ creation and mechanical lift-off of a polymer template. Appl. Phys. Lett. 99(25), 253102-1–253102-3 (2012) Demko, M., Choi, S., Zohdi, T.I., Pisano, A.P.: High resolution patterning of nanoparticles by evaporative self-assembly enabled by in-situ creation and mechanical lift-off of a polymer template. Appl. Phys. Lett. 99(25), 253102-1–253102-3 (2012)
37.
Zurück zum Zitat Demko, M.T., Cheng, J.C., Pisano, A.P.: High-resolution direct patterning of gold nanoparticles by the microfluidic molding process. Langmuir 412–417 (2010) Demko, M.T., Cheng, J.C., Pisano, A.P.: High-resolution direct patterning of gold nanoparticles by the microfluidic molding process. Langmuir 412–417 (2010)
Metadaten
Titel
Introduction: Additive/3D Printing Materials—Filaments, Functionalized Inks, and Powders
verfasst von
Tarek I. Zohdi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-70079-3_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.