Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

1. Introduction: Some Essential Attributes of Glassiness Regarding the Nature of Non-crystalline Solids

verfasst von : Hiroshi Suga

Erschienen in: Glassy, Amorphous and Nano-Crystalline Materials

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Glass products have long been used from ancient times not only in our daily life but also in some laboratory experiments such as the U tube for the measurement of volume of a gas as a function of pressure. Liquefaction of the last “permanent gas helium” was done successfully with an apparatus entirely made of glass. Formerly the glasses have been produced by cooling the melts of silicate minerals without crystallization until they becomes hard and brittle solids. Later the glasses were found to exhibit hallo diffraction patterns similar to those of the liquids. Some important concepts are involved in this description. The first is the method of preparation. The melt-cooling was used in some of the modern definitions of glasses. The second is the starting materials of inorganic origin. Organic substances such as glycerol and synthetic polymers were found to behave similarly. Thus the term glasses can be extended to a wide range of substances that easily undercool to form amorphous solids. The third is the metastability of the undercooled liquids and glasses compared to the corresponding crystalline solids. If the cooling rate is adequately slow to induce nucleation, the melt becomes crystalline solid possessing regular lattice with lower Gibbs energy. Thus the formation of glass is a problem of bypassing or avoiding the crystallization. Although the main subjects of this book are the structures and properties of ordinary network glasses of inorganic origin, it will be instructive to start with the description of the general features of glassiness exhibited by various kinds of condensed matters in which the constituents are held together by interaction forces, such as the van der Waals, hydrogen bonding, ionic or covalent bonds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gibson GE, Giauque WF (1923) The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of a glass exceeds that of a crystal at absolute zero. J Am Chem Soc 45:93–104CrossRef Gibson GE, Giauque WF (1923) The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of a glass exceeds that of a crystal at absolute zero. J Am Chem Soc 45:93–104CrossRef
2.
Zurück zum Zitat Wilks J (1961) The third law of thermodynamics. Oxford University Press, Oxford Wilks J (1961) The third law of thermodynamics. Oxford University Press, Oxford
3.
Zurück zum Zitat Mackenzie JD (ed) (1964) Modern aspects of the vitreous state, vol 3, Chapter 6. Butterworth, London Mackenzie JD (ed) (1964) Modern aspects of the vitreous state, vol 3, Chapter 6. Butterworth, London
4.
Zurück zum Zitat Oguni M, Suga H (1999) Amorphous materials and their elucidation by adiabatic calorimetry. In: Letcher T (ed) Chemical thermodynamics. IUPAC, North Carolina, pp 227–237 Oguni M, Suga H (1999) Amorphous materials and their elucidation by adiabatic calorimetry. In: Letcher T (ed) Chemical thermodynamics. IUPAC, North Carolina, pp 227–237
5.
Zurück zum Zitat Suga H, Seki S (1974) Thermodynamic investigation on glassy states of pure simple compounds. J Non-cryst Solids 16:171–194; Suga H, Seki S (1980) Frozen-in States of Orientational and Positional Disorder in Molecular Solids. Faraday Discussion No 69, 221–240 (1980) Suga H, Seki S (1974) Thermodynamic investigation on glassy states of pure simple compounds. J Non-cryst Solids 16:171–194; Suga H, Seki S (1980) Frozen-in States of Orientational and Positional Disorder in Molecular Solids. Faraday Discussion No 69, 221–240 (1980)
6.
Zurück zum Zitat Suga H (2000) Frozen-in disorder and slow relaxation in crystals. J Chem Thermodyn 25:463–484; Suga H (2000) Prospects of material science; from crystalline to amorphous solids. J Thermal Anal Calor 60:957–969 Suga H (2000) Frozen-in disorder and slow relaxation in crystals. J Chem Thermodyn 25:463–484; Suga H (2000) Prospects of material science; from crystalline to amorphous solids. J Thermal Anal Calor 60:957–969
7.
Zurück zum Zitat Brawer S (1985) Relaxation in viscous liquids and glasses. In: Review of phenomenology, molecular dynamics simulations, and theoretical treatment. American Ceramic Society, Columbus Brawer S (1985) Relaxation in viscous liquids and glasses. In: Review of phenomenology, molecular dynamics simulations, and theoretical treatment. American Ceramic Society, Columbus
8.
Zurück zum Zitat Suga H, Matsuo T (1989) Adiabatic calorimeter as an ultra-low frequency spectrometer. Pure Appl Chem 61:1123–1132CrossRef Suga H, Matsuo T (1989) Adiabatic calorimeter as an ultra-low frequency spectrometer. Pure Appl Chem 61:1123–1132CrossRef
9.
Zurück zum Zitat Kauzmann W (1948) The nature of the glassy states and the behavior of liquids at low temperature. Chem Rev 43:219–287CrossRef Kauzmann W (1948) The nature of the glassy states and the behavior of liquids at low temperature. Chem Rev 43:219–287CrossRef
10.
Zurück zum Zitat Angell CA (1991) Relaxation in liquids, polymers and plastic crystals. J Non-Cryst Solids 13:131–133 Angell CA (1991) Relaxation in liquids, polymers and plastic crystals. J Non-Cryst Solids 13:131–133
11.
Zurück zum Zitat Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–165CrossRef Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–165CrossRef
12.
Zurück zum Zitat Takahara S, Yamamuro O, Suga H (1994) Heat capacities and glass transitions of 1-propanol and 3-methylpentane under high pressure. New evidence for the entropy theory. J Non-Cryst Solids 171:259–270CrossRef Takahara S, Yamamuro O, Suga H (1994) Heat capacities and glass transitions of 1-propanol and 3-methylpentane under high pressure. New evidence for the entropy theory. J Non-Cryst Solids 171:259–270CrossRef
13.
Zurück zum Zitat Yamamuro O, Tsukushi I, Lindqvist A, Takahara S, Ishikawa M, Matsuo T (1998) Calorimetric study of toluene and ethylbenzene: thermodynamic approach to spatial heterogeneity in glass-forming liquids. J Phys Chem B 102:1605–1609CrossRef Yamamuro O, Tsukushi I, Lindqvist A, Takahara S, Ishikawa M, Matsuo T (1998) Calorimetric study of toluene and ethylbenzene: thermodynamic approach to spatial heterogeneity in glass-forming liquids. J Phys Chem B 102:1605–1609CrossRef
14.
Zurück zum Zitat Suga H (2003) Calorimetric study of frozen-in disordered solids. J Phys Condens Matter 15:S775–S789; Suga H (2005) Frozen-in disorder in condensed phases. Russian J Phys Chem 77:S7–S16 (2003); Suga H (2005) Study of transition phenomena in molecular solids. J Thermal Anal Calor 80:49–55 Suga H (2003) Calorimetric study of frozen-in disordered solids. J Phys Condens Matter 15:S775–S789; Suga H (2005) Frozen-in disorder in condensed phases. Russian J Phys Chem 77:S7–S16 (2003); Suga H (2005) Study of transition phenomena in molecular solids. J Thermal Anal Calor 80:49–55
15.
Zurück zum Zitat Eisenberg D, Kauzmann W (1969) The structure and properties of water. Clarendon, Oxford; Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford Eisenberg D, Kauzmann W (1969) The structure and properties of water. Clarendon, Oxford; Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford
16.
Zurück zum Zitat Onsager L (1967) Ferroelectricity of ice? In: Weller E (ed) Ferroelectricity. Elsevier, Amsterdam, pp 16–19 Onsager L (1967) Ferroelectricity of ice? In: Weller E (ed) Ferroelectricity. Elsevier, Amsterdam, pp 16–19
17.
Zurück zum Zitat Tajima Y, Matsuo T, Suga H (1982) Phase transition in KOH-doped ice. Nature 299:810–812; Suga H, Matsuo T, Yamamuro O (1992) Thermodynamic study of ice and Clathrate hydrates. Pure Appl Chem 64:17–26; Suga H (2005) Ultra-slow relaxation in ice and related substances. Proc Japan Acad B 81:349–362. Tajima Y, Matsuo T, Suga H (1982) Phase transition in KOH-doped ice. Nature 299:810–812; Suga H, Matsuo T, Yamamuro O (1992) Thermodynamic study of ice and Clathrate hydrates. Pure Appl Chem 64:17–26; Suga H (2005) Ultra-slow relaxation in ice and related substances. Proc Japan Acad B 81:349–362.
19.
Zurück zum Zitat Sugisaki M, Suga H, Seki S (1968) Calorimetric study of glassy state V. Heat capacities of glassy water and cubic ice. Bull Chem Soc Jpn 41:2591–2599CrossRef Sugisaki M, Suga H, Seki S (1968) Calorimetric study of glassy state V. Heat capacities of glassy water and cubic ice. Bull Chem Soc Jpn 41:2591–2599CrossRef
20.
Zurück zum Zitat Johari GP, Hallbrucker A, Mayer E (1987) The Glass-liquid transition of hyperquenched water. Nature 330:552–553CrossRef Johari GP, Hallbrucker A, Mayer E (1987) The Glass-liquid transition of hyperquenched water. Nature 330:552–553CrossRef
21.
Zurück zum Zitat Yue Y, Angell CA (2004) Clarifying the glass transition behaviour of water by comparison with hyperquenched inorganic glasses. Nature 427:717–720CrossRef Yue Y, Angell CA (2004) Clarifying the glass transition behaviour of water by comparison with hyperquenched inorganic glasses. Nature 427:717–720CrossRef
22.
Zurück zum Zitat Mishima O, Calvert LD, Whalley E (1984) Melting of ice I at 77 K and 10 kbar. Nature 310:393–395CrossRef Mishima O, Calvert LD, Whalley E (1984) Melting of ice I at 77 K and 10 kbar. Nature 310:393–395CrossRef
23.
Zurück zum Zitat Andersson O, Suga H (2002) Thermal conductivity of amorphous ices. Phys Rev B 65:140201–140204CrossRef Andersson O, Suga H (2002) Thermal conductivity of amorphous ices. Phys Rev B 65:140201–140204CrossRef
24.
25.
Zurück zum Zitat Loerting T, Schustereder W, Winkel K, Salzmann CG, Kohl I, Mayer E (2006) Amorphous ice: stepwise formation of very high density amorphous ice from low density amorphous ice. Phys Rev Lett 96:025702(4) Loerting T, Schustereder W, Winkel K, Salzmann CG, Kohl I, Mayer E (2006) Amorphous ice: stepwise formation of very high density amorphous ice from low density amorphous ice. Phys Rev Lett 96:025702(4)
26.
Zurück zum Zitat Miyazaki Y, Matsuo T, Suga H (2000) Low temperature heat capacity and glassy behavior of lysozyme crystal. J Phys Chem B 104:8044–8052CrossRef Miyazaki Y, Matsuo T, Suga H (2000) Low temperature heat capacity and glassy behavior of lysozyme crystal. J Phys Chem B 104:8044–8052CrossRef
Metadaten
Titel
Introduction: Some Essential Attributes of Glassiness Regarding the Nature of Non-crystalline Solids
verfasst von
Hiroshi Suga
Copyright-Jahr
2011
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-2882-2_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.