Skip to main content
Erschienen in:
Buchtitelbild

2012 | OriginalPaper | Buchkapitel

1. Introduction to Metallic Biomaterials

verfasst von : Hendra Hermawan

Erschienen in: Biodegradable Metals

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

After the invention of stainless steel in 1920s, metal implants have experienced vast development and clinical uses. The formation of ASTM Committee F04 on Medical and Surgical Materials and Devices in 1962 has then played important role to their development, practice and standardization. A great variety of corrosion resistant metals have been developed and used for medical implants including the class of 316L stainless steels, cobalt-chromium alloys and titanium and its alloys. New generation of metallic biomaterials have been made nickel free via novel processing including nano-processing and amorphization. Other development raised the concept of biodegradable rather than inert metals where temporary medical implants, that function only during specific period and then degrade, are targeted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ambrosio L (2009) Biomedical composites. Woodhead Publishing, Cambridge Ambrosio L (2009) Biomedical composites. Woodhead Publishing, Cambridge
Zurück zum Zitat ASTM (2003) ASTM F 138: Standard specification for wrought 18chromium-14nickel-2.5molybdenum stainless steel bar and wire for surgical implants (UNS S31673). ASTM International, West Conshohocken ASTM (2003) ASTM F 138: Standard specification for wrought 18chromium-14nickel-2.5molybdenum stainless steel bar and wire for surgical implants (UNS S31673). ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2005) ASTM F 2063: standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants. ASTM International, West Conshohocken ASTM (2005) ASTM F 2063: standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants. ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2006) ASTM F 67: standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). ASTM International, West Conshohocken ASTM (2006) ASTM F 67: standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2007a) ASTM F 75: standard specification for cobalt-28 chromium-6 molybdenum alloy castings and casting alloy for surgical implants (UNS R30075). ASTM International, West Conshohocken ASTM (2007a) ASTM F 75: standard specification for cobalt-28 chromium-6 molybdenum alloy castings and casting alloy for surgical implants (UNS R30075). ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2007b) ASTM F 90: standard specification for wrought cobalt-20chromium-15tungsten-10nickel alloy for surgical implant applications (UNS R30605). ASTM International, West Conshohocken ASTM (2007b) ASTM F 90: standard specification for wrought cobalt-20chromium-15tungsten-10nickel alloy for surgical implant applications (UNS R30605). ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2007c) ASTM F 562: standard specification for wrought 35cobalt-35nickel-20chromium-10molybdenum alloy for surgical implant applications (UNS R30035). ASTM International, West Conshohocken ASTM (2007c) ASTM F 562: standard specification for wrought 35cobalt-35nickel-20chromium-10molybdenum alloy for surgical implant applications (UNS R30035). ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2008) ASTM F 136: standard specification for wrought titanium-6 aluminum-4 vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNS R56401). ASTM International, West Conshohocken ASTM (2008) ASTM F 136: standard specification for wrought titanium-6 aluminum-4 vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNS R56401). ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2009) ASTM F 2181: standard specification for wrought seamless stainless steel tubing for surgical implants. ASTM International, West Conshohocken ASTM (2009) ASTM F 2181: standard specification for wrought seamless stainless steel tubing for surgical implants. ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2011a) ASTM F 899: standard specification for wrought stainless steels for surgical instruments. ASTM International, West Conshohocken ASTM (2011a) ASTM F 899: standard specification for wrought stainless steels for surgical instruments. ASTM International, West Conshohocken
Zurück zum Zitat ASTM (2011b) ASTM F 1537: standard specification for wrought cobalt-28chromium-6molybdenum alloys for surgical implants (UNS R31537, UNS R31538, and UNS R31539). ASTM International, West Conshohocken ASTM (2011b) ASTM F 1537: standard specification for wrought cobalt-28chromium-6molybdenum alloys for surgical implants (UNS R31537, UNS R31538, and UNS R31539). ASTM International, West Conshohocken
Zurück zum Zitat Black J (1984) Biological performance of materials. Plenum Press, New York Black J (1984) Biological performance of materials. Plenum Press, New York
Zurück zum Zitat Brandes EA, Brook GB (1992) Smithells metals reference book, 7th edn. Butterworth-Heinemann, Oxford Brandes EA, Brook GB (1992) Smithells metals reference book, 7th edn. Butterworth-Heinemann, Oxford
Zurück zum Zitat Chen Q, Liu L, Zhang S-M (2010) The potential of Zr-based bulk metallic glasses as biomaterials. Front Mater Sci China 4:34–44CrossRef Chen Q, Liu L, Zhang S-M (2010) The potential of Zr-based bulk metallic glasses as biomaterials. Front Mater Sci China 4:34–44CrossRef
Zurück zum Zitat Chiba A, Lee S-H, Matsumoto H, Nakamura M (2009) Construction of processing map for biomedical Co-28Cr-6Mo-0.16N alloy by studying its hot deformation behavior using compression tests. Mater Sci Eng A 513–514:286–293 Chiba A, Lee S-H, Matsumoto H, Nakamura M (2009) Construction of processing map for biomedical Co-28Cr-6Mo-0.16N alloy by studying its hot deformation behavior using compression tests. Mater Sci Eng A 513–514:286–293
Zurück zum Zitat Habibovic P, Barrère F, Blitterswijk CAV, Groot Kd, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 83:517–522 Habibovic P, Barrère F, Blitterswijk CAV, Groot Kd, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 83:517–522
Zurück zum Zitat Hench LL, Ethridge EC (1975) Biomaterials: the interfacial problem. Adv Biomed Eng 5:35–150 Hench LL, Ethridge EC (1975) Biomaterials: the interfacial problem. Adv Biomed Eng 5:35–150
Zurück zum Zitat Hermawan H, Mantovani D (2009) Degradable metallic biomaterials: the concept, current developments and future directions. Minerva Biotecnol 21:207–216 Hermawan H, Mantovani D (2009) Degradable metallic biomaterials: the concept, current developments and future directions. Minerva Biotecnol 21:207–216
Zurück zum Zitat Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H-J (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials 27:955–963CrossRef Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H-J (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials 27:955–963CrossRef
Zurück zum Zitat Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362CrossRef Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362CrossRef
Zurück zum Zitat John CW (2000) Biocompatibility of dental casting alloys: a review. J Pros Dent 83:223–234CrossRef John CW (2000) Biocompatibility of dental casting alloys: a review. J Pros Dent 83:223–234CrossRef
Zurück zum Zitat Johnson W (2002) Bulk amorphous metal—an emerging engineering material. J Min Met Mat Soc 54:40–43CrossRef Johnson W (2002) Bulk amorphous metal—an emerging engineering material. J Min Met Mat Soc 54:40–43CrossRef
Zurück zum Zitat Kokubo T (2008) Bioceramics and their clinical applications. Woodhead Publishing, CambridgeCrossRef Kokubo T (2008) Bioceramics and their clinical applications. Woodhead Publishing, CambridgeCrossRef
Zurück zum Zitat Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new [beta] type titanium alloys for implant materials. Mater Sci Eng A 243:244–249CrossRef Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new [beta] type titanium alloys for implant materials. Mater Sci Eng A 243:244–249CrossRef
Zurück zum Zitat Lahann J, Klee D, Thelen H, Bienert H, Vorwerk D, Hocker H (1999) Improvement of haemocompatibility of metallic stents by polymer coating. J Mater Sci Mater Med 10:443–448CrossRef Lahann J, Klee D, Thelen H, Bienert H, Vorwerk D, Hocker H (1999) Improvement of haemocompatibility of metallic stents by polymer coating. J Mater Sci Mater Med 10:443–448CrossRef
Zurück zum Zitat Lambotte A (1909) Technique et indication des prothèses dans le traitement des fractures. Presse Med 17:321 Lambotte A (1909) Technique et indication des prothèses dans le traitement des fractures. Presse Med 17:321
Zurück zum Zitat Lane WA (1895) Some remarks on the treatment of fractures. Brit Med J 1:861–863CrossRef Lane WA (1895) Some remarks on the treatment of fractures. Brit Med J 1:861–863CrossRef
Zurück zum Zitat Lee SH, Nomura N, Chiba A (2008) Significant improvement in mechanical properties of biomedical Co-Cr-Mo alloys with combination of N addition and Cr-enrichment. Mater Trans 49:260–264CrossRef Lee SH, Nomura N, Chiba A (2008) Significant improvement in mechanical properties of biomedical Co-Cr-Mo alloys with combination of N addition and Cr-enrichment. Mater Trans 49:260–264CrossRef
Zurück zum Zitat Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K (2007) Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28:2810–2820CrossRef Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K (2007) Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28:2810–2820CrossRef
Zurück zum Zitat Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P (2008) Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 29:2608–2615CrossRef Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P (2008) Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 29:2608–2615CrossRef
Zurück zum Zitat Matsumoto H, Watanabe S, Hanada S (2005) Beta TiNbSn alloys with low Young’s modulus and high strength. Mater Trans 46:1070–1078CrossRef Matsumoto H, Watanabe S, Hanada S (2005) Beta TiNbSn alloys with low Young’s modulus and high strength. Mater Trans 46:1070–1078CrossRef
Zurück zum Zitat Niinomi M (2010) Metals for biomedical devices. Woodhead Publishing, CambridgeCrossRef Niinomi M (2010) Metals for biomedical devices. Woodhead Publishing, CambridgeCrossRef
Zurück zum Zitat Park JB, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New York Park JB, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New York
Zurück zum Zitat Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670CrossRef Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670CrossRef
Zurück zum Zitat Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635CrossRef Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635CrossRef
Zurück zum Zitat Schneck DJ (2000) The biomedical engineering handbook. CRC Press LLC, Boca Raton Schneck DJ (2000) The biomedical engineering handbook. CRC Press LLC, Boca Raton
Zurück zum Zitat Schroers J, Kumar G, Hodges T, Chan S, Kyriakides T (2009) Bulk metallic glasses for biomedical applications. J Min Met Mater Soc 61:21–29CrossRef Schroers J, Kumar G, Hodges T, Chan S, Kyriakides T (2009) Bulk metallic glasses for biomedical applications. J Min Met Mater Soc 61:21–29CrossRef
Zurück zum Zitat Sherman WO (1912) Vanadium steel bone plates and screws. Surg Gynecol Obstet 14:629–634 Sherman WO (1912) Vanadium steel bone plates and screws. Surg Gynecol Obstet 14:629–634
Zurück zum Zitat Stack RS, Califf RM, Phillips HR, Pryor DB, Quigley PJ, Bauman RP, Tcheng JE, Greenfield JC Jr (1988) Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62:3F–24FCrossRef Stack RS, Califf RM, Phillips HR, Pryor DB, Quigley PJ, Bauman RP, Tcheng JE, Greenfield JC Jr (1988) Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62:3F–24FCrossRef
Zurück zum Zitat Wang YB, Zheng YF, Wei SC, Li M (2011) In vitro study on Zr-based bulk metallic glasses as potential biomaterials. J Biomed Mater Res B 96:34–46 Wang YB, Zheng YF, Wei SC, Li M (2011) In vitro study on Zr-based bulk metallic glasses as potential biomaterials. J Biomed Mater Res B 96:34–46
Zurück zum Zitat Williams DF (ed) (1987) Definitions in biomaterials. In: Progress in biomedical engineering. Elsevier, Amsterdam Williams DF (ed) (1987) Definitions in biomaterials. In: Progress in biomedical engineering. Elsevier, Amsterdam
Zurück zum Zitat Yang K, Ren Y (2010) Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater 11:1–13CrossRef Yang K, Ren Y (2010) Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater 11:1–13CrossRef
Zurück zum Zitat Zberg B, Uggowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8:887–891CrossRef Zberg B, Uggowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8:887–891CrossRef
Metadaten
Titel
Introduction to Metallic Biomaterials
verfasst von
Hendra Hermawan
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31170-3_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.