Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Introduction to Metallic Foams

verfasst von : Dr. Dipen Kumar Rajak, Prof. Manoj Gupta

Erschienen in: An Insight Into Metal Based Foams

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, metal foams are introduced and fundamentally described. Their unique structure and properties which made them different from conventional materials are introduced. For enhancing their appreciation, this chapter systematically and chronologically summarizes the origin and history of metal foams highlighting the efforts of researchers from prehistoric to modern times. The differentiation of metal foams when compared to conventional materials is highlighted. Different manufacturing methods to develop metal foams are described while simultaneously highlighting the need of optimizing the processing parameters. Finally, their applications originating due to their unique physical and mechanical properties in various industrial sectors are described succinctly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Banhart, J. (2012). Light-metal foams-history of innovation and technological challenges. Advanced Engineering Materials, 15(3), 82–111.CrossRef Banhart, J. (2012). Light-metal foams-history of innovation and technological challenges. Advanced Engineering Materials, 15(3), 82–111.CrossRef
2.
Zurück zum Zitat Ulm, F.-J. (2001). Construction: Cellular materials. Encyclopedia of Materials: Science and Technology, 1570-1574. Ulm, F.-J. (2001). Construction: Cellular materials. Encyclopedia of Materials: Science and Technology, 1570-1574.
3.
Zurück zum Zitat Wheeler, E.(2001). Wood: Macroscopic anatomy. Encyclopedia of Materials: Science and Technology, 9653-9657. Wheeler, E.(2001). Wood: Macroscopic anatomy. Encyclopedia of Materials: Science and Technology, 9653-9657.
4.
Zurück zum Zitat Green, D. J. (2001). Porous ceramic processing. In Encyclopedia of Materials: Science and Technology (pp. 7758–7761). Green, D. J. (2001). Porous ceramic processing. In Encyclopedia of Materials: Science and Technology (pp. 7758–7761).
9.
Zurück zum Zitat Erb, G. H. (1972). Method for shaping products made of foam metal by progressive localized crushing of foam structure. U.S. Patent 3,595,059, issued July 27. Erb, G. H. (1972). Method for shaping products made of foam metal by progressive localized crushing of foam structure. U.S. Patent 3,595,059, issued July 27.
10.
Zurück zum Zitat Berry Jr, C. B. (1972). Foamed metal. U.S. Patent 3,671,221, issued June 20. Berry Jr, C. B. (1972). Foamed metal. U.S. Patent 3,671,221, issued June 20.
11.
Zurück zum Zitat Niebylski, L. M., Jarema, C. P. (1974). Lead-zinc foams. U.S. Patent 3,847,591, issued November 12. Niebylski, L. M., Jarema, C. P. (1974). Lead-zinc foams. U.S. Patent 3,847,591, issued November 12.
12.
Zurück zum Zitat Thornton, P. H., & Magee, C. L. (1975). The deformation of aluminum foams. Metallurgical Transactions A, 6(6), 1253–1263.CrossRef Thornton, P. H., & Magee, C. L. (1975). The deformation of aluminum foams. Metallurgical Transactions A, 6(6), 1253–1263.CrossRef
13.
Zurück zum Zitat Niebylski, L. M., & Jarema, C. P. (1975). Pressure contouring and bonding of metal foams. U.S. Patent 3,873,392, issued March 25. Niebylski, L. M., & Jarema, C. P. (1975). Pressure contouring and bonding of metal foams. U.S. Patent 3,873,392, issued March 25.
14.
Zurück zum Zitat Banhart, J., & Weaire, D. (2002). On the road again: Metal foams find favor. Physics Today, 55, 37–42.CrossRef Banhart, J., & Weaire, D. (2002). On the road again: Metal foams find favor. Physics Today, 55, 37–42.CrossRef
15.
Zurück zum Zitat Niebylski, L. M., & Jarema, C. P., Lee, T. E. (1976). Reinforced foamed metal. U.S. Patent 3,940,262, issue Feb 24. Niebylski, L. M., & Jarema, C. P., Lee, T. E. (1976). Reinforced foamed metal. U.S. Patent 3,940,262, issue Feb 24.
16.
Zurück zum Zitat Kendall, B. R. F. (1980). Vacuum applications of metal foams. Journal of Vacuum Science and Technology, 17(6), 1385–1385.CrossRef Kendall, B. R. F. (1980). Vacuum applications of metal foams. Journal of Vacuum Science and Technology, 17(6), 1385–1385.CrossRef
17.
Zurück zum Zitat Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.CrossRef Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.CrossRef
18.
Zurück zum Zitat Cocks, F. H. (1984). Ultralight reactive metal foams in space—A novel concept. Journal of Spacecraft and Rockets, 21(5), 510–512.CrossRef Cocks, F. H. (1984). Ultralight reactive metal foams in space—A novel concept. Journal of Spacecraft and Rockets, 21(5), 510–512.CrossRef
19.
Zurück zum Zitat Miyoshi, T., Itoh, M., Akiyama, S., & Kitahara, A. (2000). ALPORAS aluminum foam: Production process, properties, and applications. Advanced Engineering Materials, 2, 179–183. 10.1002/(SICI)1527-2648(200004)2:43.3.CO;2-7. Miyoshi, T., Itoh, M., Akiyama, S., & Kitahara, A. (2000). ALPORAS aluminum foam: Production process, properties, and applications. Advanced Engineering Materials, 2, 179–183. 10.1002/(SICI)1527-2648(200004)2:43.3.CO;2-7.
20.
Zurück zum Zitat Marracino, J. M., Coeuret, F., & Langlois, S. (1987). A first investigation of flow-through porous electrodes made of metallic felts or foams. Electrochimica Acta, 32(9), 1303–1309.CrossRef Marracino, J. M., Coeuret, F., & Langlois, S. (1987). A first investigation of flow-through porous electrodes made of metallic felts or foams. Electrochimica Acta, 32(9), 1303–1309.CrossRef
21.
Zurück zum Zitat Baumeister, J. (1991). Verfahren zur Herstellung poroser Metallkorper. German Patent, 40(18), 360. Baumeister, J. (1991). Verfahren zur Herstellung poroser Metallkorper. German Patent, 40(18), 360.
22.
Zurück zum Zitat Jin, I., Lorne D. K., & Harry S. (1990). Method of producing lightweight foamed metal. U.S. Patent 4,973,358, issued November 27. Jin, I., Lorne D. K., & Harry S. (1990). Method of producing lightweight foamed metal. U.S. Patent 4,973,358, issued November 27.
23.
Zurück zum Zitat Chen, C. P., & Lakes, R. S. (1991). Holographic study of conventional and negative poisson ratio metallic foams: Elasticity, yield and micro-deformation. Journal of Materials Science, 26(20), 5397–5402.CrossRef Chen, C. P., & Lakes, R. S. (1991). Holographic study of conventional and negative poisson ratio metallic foams: Elasticity, yield and micro-deformation. Journal of Materials Science, 26(20), 5397–5402.CrossRef
24.
Zurück zum Zitat Jin, I., Lorne D. K., & Harry S. (1992). Stabilized metal foam body. U.S. Patent 5,112,697, issued May 12. Jin, I., Lorne D. K., & Harry S. (1992). Stabilized metal foam body. U.S. Patent 5,112,697, issued May 12.
25.
Zurück zum Zitat Clancy, R. B., J. K. Cochran, & T. H. Sanders. (1994). Fabrication and properties of hollow sphere nickel foams. MRS Online Proceedings Library Archive, 372. 10.1557/PROC-372–155. Clancy, R. B., J. K. Cochran, & T. H. Sanders. (1994). Fabrication and properties of hollow sphere nickel foams. MRS Online Proceedings Library Archive, 372. 10.1557/PROC-372–155.
26.
Zurück zum Zitat Knott, W., Niedermann, B., Recksik, M., & Weier, A. (2005). Process for producing metal foam and metal body produced using this process. U.S. Patent 6,915,834, issued July 12. Knott, W., Niedermann, B., Recksik, M., & Weier, A. (2005). Process for producing metal foam and metal body produced using this process. U.S. Patent 6,915,834, issued July 12.
27.
Zurück zum Zitat Knott, W., Niedermann, B., Recksik, M., & Weier, A. (2005). Process for producing metal/metal foam composite components. U.S. Patent 6,874,562, issued April 5. Knott, W., Niedermann, B., Recksik, M., & Weier, A. (2005). Process for producing metal/metal foam composite components. U.S. Patent 6,874,562, issued April 5.
28.
Zurück zum Zitat Dobesberger, F., Flankl, H., & Leitlmeier, D. (2006). Process and device for manufacturing free-flowing metal foam. U.S. Patent 7,144,636, issued December 5. Dobesberger, F., Flankl, H., & Leitlmeier, D. (2006). Process and device for manufacturing free-flowing metal foam. U.S. Patent 7,144,636, issued December 5.
29.
Zurück zum Zitat Kretz, R., Renger, K., Rettenbacher, G., & Hinterberger, A. (2008). Method for producing metal foam bodies. U.S. Patent 7,396,380, issued July 8. Kretz, R., Renger, K., Rettenbacher, G., & Hinterberger, A. (2008). Method for producing metal foam bodies. U.S. Patent 7,396,380, issued July 8.
30.
Zurück zum Zitat Kattannek, M., Prenger, F., Spriestersbach, J., & Wisniewski, J. (2009). Porous metal foam body. U.S. Patent Application 11/921,141, filed March 26. Kattannek, M., Prenger, F., Spriestersbach, J., & Wisniewski, J. (2009). Porous metal foam body. U.S. Patent Application 11/921,141, filed March 26.
31.
Zurück zum Zitat Dunand, D. C. & Bansiddhi, A. (2010). Method of making metallic foams and foams produced. U.S. Patent Application 12/590,992, filed June 17. Dunand, D. C. & Bansiddhi, A. (2010). Method of making metallic foams and foams produced. U.S. Patent Application 12/590,992, filed June 17.
32.
Zurück zum Zitat Campagna, M. J., & Moffat, R. J. (2011). Heat exchanger with conduit surrounded by metal foam. U.S. Patent 8,069,912, issued December 6. Campagna, M. J., & Moffat, R. J. (2011). Heat exchanger with conduit surrounded by metal foam. U.S. Patent 8,069,912, issued December 6.
33.
Zurück zum Zitat Jung, A., Natter, H., Hempelmann, R., & Lach, E. (2012). Metal foams. U.S. Patent Application 13/377,021, filed July 12. Jung, A., Natter, H., Hempelmann, R., & Lach, E. (2012). Metal foams. U.S. Patent Application 13/377,021, filed July 12.
34.
Zurück zum Zitat Klett, J. W., Menchhofer, P. A., & Hunter, J. A. (2013). Metal-bonded graphite foam composites. U.S. Patent Application 13/528,929, filed August 1. Klett, J. W., Menchhofer, P. A., & Hunter, J. A. (2013). Metal-bonded graphite foam composites. U.S. Patent Application 13/528,929, filed August 1.
35.
Zurück zum Zitat Banhart, J., & Garcia-Moreno, F. (2013). Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material. U.S. Patent 8562904B2, issued October 22. Banhart, J., & Garcia-Moreno, F. (2013). Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material. U.S. Patent 8562904B2, issued October 22.
36.
Zurück zum Zitat Cochran, J. K., Sanders, T. H., Strbik, O. M., & C. A. Wedding. (2014). Metal syntactic foam. U.S. Patent 8,815,408, issued August 26. Cochran, J. K., Sanders, T. H., Strbik, O. M., & C. A. Wedding. (2014). Metal syntactic foam. U.S. Patent 8,815,408, issued August 26.
37.
Zurück zum Zitat Babcsan, N., Beke, S., & Makk, B. (2015). Method of producing a metal foam by oscillations and thus obtained metal foam product. U.S. Patent 9,168,584, issued October 27. Babcsan, N., Beke, S., & Makk, B. (2015). Method of producing a metal foam by oscillations and thus obtained metal foam product. U.S. Patent 9,168,584, issued October 27.
38.
Zurück zum Zitat Reesink, T. H. (2016). Open-celled, porous shaped body for heat exchangers. U.S. Patent 9,343,209, issued May 17. Reesink, T. H. (2016). Open-celled, porous shaped body for heat exchangers. U.S. Patent 9,343,209, issued May 17.
39.
Zurück zum Zitat Noraas, R. B., Bullied, S. J., Bartholomew, M. F., Blondin, J. F., & Marcin, J. J. (2017). Investment technique for solid mold casting of reticulated metal foams. U.S. Patent 9,789,534, issued October 17. Noraas, R. B., Bullied, S. J., Bartholomew, M. F., Blondin, J. F., & Marcin, J. J. (2017). Investment technique for solid mold casting of reticulated metal foams. U.S. Patent 9,789,534, issued October 17.
40.
Zurück zum Zitat Wood, T. H., Wetzel, T. G., Luedke, J. G., & Tucker, T. M. (2018). Combined surface cooler and acoustic absorber for turbomachines. U.S. Patent 9,938,931, issued April 10. Wood, T. H., Wetzel, T. G., Luedke, J. G., & Tucker, T. M. (2018). Combined surface cooler and acoustic absorber for turbomachines. U.S. Patent 9,938,931, issued April 10.
41.
Zurück zum Zitat Aronsson, R. R., Iseard, B. S., & Kalal, P. (2019). Method of manufacturing hybrid metal foams. U.S. Patent Application 15/639,232, filed January 3. Aronsson, R. R., Iseard, B. S., & Kalal, P. (2019). Method of manufacturing hybrid metal foams. U.S. Patent Application 15/639,232, filed January 3.
42.
Zurück zum Zitat Lorna J. G., & Michael F. A. (1999), Cellular solids: Structure and properties. Cambridge University Press. 10.1017/CBO9781139878326. Lorna J. G., & Michael F. A. (1999), Cellular solids: Structure and properties. Cambridge University Press. 10.1017/CBO9781139878326.
43.
Zurück zum Zitat Srivastava, V. C., & Sahoo, Kanai. (2006). Metallic foams: Current status and future prospects. IIM Metal News, 9, 10. Srivastava, V. C., & Sahoo, Kanai. (2006). Metallic foams: Current status and future prospects. IIM Metal News, 9, 10.
44.
Zurück zum Zitat Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632.CrossRef Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632.CrossRef
45.
Zurück zum Zitat Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. J. (2000). Metal foams: A design guide. Elsevier. Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. J. (2000). Metal foams: A design guide. Elsevier.
46.
Zurück zum Zitat Lefebvre, L.-P., Banhart, J., & Dunand, D. C. (2008). Porous metals and metallic foams: Current status and recent developments. Advanced Engineering Materials, 10(9), 775–787.CrossRef Lefebvre, L.-P., Banhart, J., & Dunand, D. C. (2008). Porous metals and metallic foams: Current status and recent developments. Advanced Engineering Materials, 10(9), 775–787.CrossRef
47.
Zurück zum Zitat Lu, T. J., Stone, H. A., & Ashby, M. F. (1998). Heat transfer in open-cell metal foams. Acta Materialia, 46(10), 3619–3635.CrossRef Lu, T. J., Stone, H. A., & Ashby, M. F. (1998). Heat transfer in open-cell metal foams. Acta Materialia, 46(10), 3619–3635.CrossRef
48.
Zurück zum Zitat Ozmat, B., Leyda, B., & Benson, B. (2004). Thermal applications of open-cell metal foams. Materials and Manufacturing Processes, 19(5), 839–862.CrossRef Ozmat, B., Leyda, B., & Benson, B. (2004). Thermal applications of open-cell metal foams. Materials and Manufacturing Processes, 19(5), 839–862.CrossRef
49.
Zurück zum Zitat Ambrosio, G., Bianco, N., Chiu, W. K. S., Iasiello, M., Naso, V., & Oliviero, M. (2016). The effect of open-cell metal foams strut shape on convection heat transfer and pressure drop. Applied Thermal Engineering, 103, 333–343.CrossRef Ambrosio, G., Bianco, N., Chiu, W. K. S., Iasiello, M., Naso, V., & Oliviero, M. (2016). The effect of open-cell metal foams strut shape on convection heat transfer and pressure drop. Applied Thermal Engineering, 103, 333–343.CrossRef
51.
Zurück zum Zitat Pinkhasov, E. (1990). U.S. Patent No. 4,975,230. Washington, DC: U.S. Patent and Trademark Office. Pinkhasov, E. (1990). U.S. Patent No. 4,975,230. Washington, DC: U.S. Patent and Trademark Office.
52.
Zurück zum Zitat Tan, P. J., Harrigan, J. J., & Reid, S. R. (2002). Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Materials Science and Technology, 18(5), 480–488.CrossRef Tan, P. J., Harrigan, J. J., & Reid, S. R. (2002). Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Materials Science and Technology, 18(5), 480–488.CrossRef
53.
Zurück zum Zitat Jeon, I., Katou, K., Sonoda, T., Asahina, T., & Kang, K.-J. (2009). Cell wall mechanical properties of closed-cell Al foam. Mechanics of Materials, 41(1), 60–73.CrossRef Jeon, I., Katou, K., Sonoda, T., Asahina, T., & Kang, K.-J. (2009). Cell wall mechanical properties of closed-cell Al foam. Mechanics of Materials, 41(1), 60–73.CrossRef
54.
Zurück zum Zitat Patten, J. W. (1978). U.S. Patent No. 4,099,961. Washington, DC: U.S. Patent and Trademark Office. Patten, J. W. (1978). U.S. Patent No. 4,099,961. Washington, DC: U.S. Patent and Trademark Office.
58.
Zurück zum Zitat Walther, Gunnar, Kloeden, Burghardt, & Kieback, Bernd. (2010). A new pm process for manufacturing of alloyed foams for high temperature applications. Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM, 2010, 4. Walther, Gunnar, Kloeden, Burghardt, & Kieback, Bernd. (2010). A new pm process for manufacturing of alloyed foams for high temperature applications. Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM, 2010, 4.
59.
Zurück zum Zitat Wen, C. E., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., & Mabuchi, M. (2002). Journal of Materials Science Materials in Medicine, 13(4), 397–401.CrossRef Wen, C. E., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., & Mabuchi, M. (2002). Journal of Materials Science Materials in Medicine, 13(4), 397–401.CrossRef
60.
Zurück zum Zitat Queheillalt, D. T., Katsumura, Y., & Wadley, H. N. G. (2004). Synthesis of stochastic open cell Ni-based foams. Scripta Materialia, 50(3), 313–317.CrossRef Queheillalt, D. T., Katsumura, Y., & Wadley, H. N. G. (2004). Synthesis of stochastic open cell Ni-based foams. Scripta Materialia, 50(3), 313–317.CrossRef
61.
Zurück zum Zitat Salimon, A., Brechet, Y., Ashby, M. F., & Greer, A. L. (2005). Potential applications for steel and titanium metal foams. Journal of Materials Science, 40(22), 5793–5799.CrossRef Salimon, A., Brechet, Y., Ashby, M. F., & Greer, A. L. (2005). Potential applications for steel and titanium metal foams. Journal of Materials Science, 40(22), 5793–5799.CrossRef
62.
Zurück zum Zitat Murakami, T., Akagi, T., & Kasai, E. (2014). Development of porous iron based material by slag foaming and its reduction. Procedia Materials Science, 4, 27–32.CrossRef Murakami, T., Akagi, T., & Kasai, E. (2014). Development of porous iron based material by slag foaming and its reduction. Procedia Materials Science, 4, 27–32.CrossRef
63.
Zurück zum Zitat Murakami, Taichi, Ohara, Kensuke, Narushima, Takayuki, & Ouchi, Chiaki. (2007). Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Materials Transactions, 48(11), 2937–2944.CrossRef Murakami, Taichi, Ohara, Kensuke, Narushima, Takayuki, & Ouchi, Chiaki. (2007). Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Materials Transactions, 48(11), 2937–2944.CrossRef
64.
Zurück zum Zitat Murakami, T., Omameuda, G., & Kasai, E. (2010). Effect of Cr2O3 and WO3 addition on pore formation and microstructure in iron foam. ISIJ International, 50, 307–313.CrossRef Murakami, T., Omameuda, G., & Kasai, E. (2010). Effect of Cr2O3 and WO3 addition on pore formation and microstructure in iron foam. ISIJ International, 50, 307–313.CrossRef
65.
Zurück zum Zitat Schroers, J., & Johnson, W. L. (2004). Ductile bulk metallic glass. Physical Review Letters, 93(25). Schroers, J., & Johnson, W. L. (2004). Ductile bulk metallic glass. Physical Review Letters, 93(25).
66.
Zurück zum Zitat Brothers, A. H., Dunand, D. C., Zheng, Q., & Xu, J. (2007). Amorphous Mg-based metal foams with ductile hollow spheres. Journal of Applied Physics, 102(2), 023508.CrossRef Brothers, A. H., Dunand, D. C., Zheng, Q., & Xu, J. (2007). Amorphous Mg-based metal foams with ductile hollow spheres. Journal of Applied Physics, 102(2), 023508.CrossRef
67.
Zurück zum Zitat Brothers, A., & Dunand, D. (2005). Plasticity and damage in cellular amorphous metals. Acta Materialia, 53(16), 4427–4440.CrossRef Brothers, A., & Dunand, D. (2005). Plasticity and damage in cellular amorphous metals. Acta Materialia, 53(16), 4427–4440.CrossRef
68.
Zurück zum Zitat Wada, T., Kinaka, M., & Inoue, A. (2006). Effect of volume fraction and geometry of pores on mechanical properties of porous bulk glassy Pd42.5Cu30Ni7.5P20 alloys. Journal of Materials Research, 21(04), 1041–1047. Wada, T., Kinaka, M., & Inoue, A. (2006). Effect of volume fraction and geometry of pores on mechanical properties of porous bulk glassy Pd42.5Cu30Ni7.5P20 alloys. Journal of Materials Research, 21(04), 1041–1047.
69.
Zurück zum Zitat Banhart, J., & Seeliger, H.-W. (2008). Aluminium foam sandwich panels: Manufacture, metallurgy and applications. Advanced Engineering Materials, 10(9), 793–802.CrossRef Banhart, J., & Seeliger, H.-W. (2008). Aluminium foam sandwich panels: Manufacture, metallurgy and applications. Advanced Engineering Materials, 10(9), 793–802.CrossRef
70.
Zurück zum Zitat Leitlmeier, D., Degischer, H., & Flankl, H. (2002). Development of a foaming process for particulate reinforced aluminum melts. Advanced Engineering Materials, 4, 735–740.CrossRef Leitlmeier, D., Degischer, H., & Flankl, H. (2002). Development of a foaming process for particulate reinforced aluminum melts. Advanced Engineering Materials, 4, 735–740.CrossRef
71.
Zurück zum Zitat Goehler, H., Jehring, U., Meinert, J., Hauser, R., Quadbeck, P., Kuemmel, K., et al. (2013). Functionalized metallic hollow sphere structures. Advanced Engineering Materials, 16(3), 335–339.CrossRef Goehler, H., Jehring, U., Meinert, J., Hauser, R., Quadbeck, P., Kuemmel, K., et al. (2013). Functionalized metallic hollow sphere structures. Advanced Engineering Materials, 16(3), 335–339.CrossRef
72.
Zurück zum Zitat Lee, M. G., Hoang, V. M., Yoon, J. W., Han, S. M., Suh, Y. S., & Kang, K. J. (2014). Compressive strength of wire-woven bulk kagome with various orientations. Procedia Materials Science, 4, 209–214.CrossRef Lee, M. G., Hoang, V. M., Yoon, J. W., Han, S. M., Suh, Y. S., & Kang, K. J. (2014). Compressive strength of wire-woven bulk kagome with various orientations. Procedia Materials Science, 4, 209–214.CrossRef
73.
Zurück zum Zitat Lee, Y. H., Lee, B. K., Jeon, I., & Kang, K. J. (2007). Wire-woven bulk Kagome truss cores. Acta Materialia, 55(18), 6084–6094.CrossRef Lee, Y. H., Lee, B. K., Jeon, I., & Kang, K. J. (2007). Wire-woven bulk Kagome truss cores. Acta Materialia, 55(18), 6084–6094.CrossRef
74.
Zurück zum Zitat Korner, C., & Singer, R. F. (2000). Processing of metal foams-challenges and opportunities. Advanced Engineering Materials, 2(4), 159–165.CrossRef Korner, C., & Singer, R. F. (2000). Processing of metal foams-challenges and opportunities. Advanced Engineering Materials, 2(4), 159–165.CrossRef
77.
Zurück zum Zitat Ryan, G., Pandit, A., & Apatsidis, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651–2670.CrossRef Ryan, G., Pandit, A., & Apatsidis, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651–2670.CrossRef
78.
Zurück zum Zitat Bram, M., Stiller, C., Buchkremer, H. P., Stover, D., & Baur, H. (2000). High-porosity titanium, stainless steel, and superalloy parts. Advanced Engineering Materials, 2(4), 196–199.CrossRef Bram, M., Stiller, C., Buchkremer, H. P., Stover, D., & Baur, H. (2000). High-porosity titanium, stainless steel, and superalloy parts. Advanced Engineering Materials, 2(4), 196–199.CrossRef
79.
Zurück zum Zitat Banhart, J., Baumeister, J. & Weber, M. (1995). Powder metallurgical technology for the production of metallic foams. In European Conference on Advanced PM Materials (Euro PM’95). Banhart, J., Baumeister, J. & Weber, M. (1995). Powder metallurgical technology for the production of metallic foams. In European Conference on Advanced PM Materials (Euro PM’95).
80.
Zurück zum Zitat Asavavisithchai, S., & Kennedy, A. R. (2006). The effect of compaction method on the expansion and stability of aluminium foams. Advanced Engineering Materials, 8, 810–815.CrossRef Asavavisithchai, S., & Kennedy, A. R. (2006). The effect of compaction method on the expansion and stability of aluminium foams. Advanced Engineering Materials, 8, 810–815.CrossRef
81.
Zurück zum Zitat Bakan, H. I., & Korkmaz, K. (2015). Synthesis and properties of metal matrix composite foams based on austenitic stainless steels-titanium carbonitrides. Materials and Design, 83, 154–158.CrossRef Bakan, H. I., & Korkmaz, K. (2015). Synthesis and properties of metal matrix composite foams based on austenitic stainless steels-titanium carbonitrides. Materials and Design, 83, 154–158.CrossRef
82.
Zurück zum Zitat Li, J. P., de Wijn, J. R., Van Blitterswijk, C. A., & de Groot, K. (2006). Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 27(8), 1223–1235.CrossRef Li, J. P., de Wijn, J. R., Van Blitterswijk, C. A., & de Groot, K. (2006). Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 27(8), 1223–1235.CrossRef
83.
Zurück zum Zitat Butev, E., Yeni, E., Yilmaz, E., Esen, Z., & Bor, Ş. (2014). Effect of alkali treatment parameters on surface structures and mechanical properties of porous Ti6Al7Nb scaffolds. IMMC, Istanbul, Turkey. Butev, E., Yeni, E., Yilmaz, E., Esen, Z., & Bor, Ş. (2014). Effect of alkali treatment parameters on surface structures and mechanical properties of porous Ti6Al7Nb scaffolds. IMMC, Istanbul, Turkey.
84.
Zurück zum Zitat Banhart, J., & Baumeister, J. (1998). Production methods for metallic foams. MRS Proceedings, 521, 121.CrossRef Banhart, J., & Baumeister, J. (1998). Production methods for metallic foams. MRS Proceedings, 521, 121.CrossRef
85.
Zurück zum Zitat Shin, H.-C., & Liu, M. (2004). Copper foam structures with highly porous nanostructured walls. Chemistry of Materials, 16(25), 5460–5464.CrossRef Shin, H.-C., & Liu, M. (2004). Copper foam structures with highly porous nanostructured walls. Chemistry of Materials, 16(25), 5460–5464.CrossRef
86.
Zurück zum Zitat Singh, S., & Bhatnagar, N. (2017). A survey of fabrication and application of metallic foams (1925-2017). Journal of Porous Materials, 25(2), 537–554.CrossRef Singh, S., & Bhatnagar, N. (2017). A survey of fabrication and application of metallic foams (1925-2017). Journal of Porous Materials, 25(2), 537–554.CrossRef
91.
Zurück zum Zitat Tan, L., Gong, M., Zheng, F., Zhang, B., & Yang, K. (2009). Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomedical Materials, 4(1), 015016.CrossRef Tan, L., Gong, M., Zheng, F., Zhang, B., & Yang, K. (2009). Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomedical Materials, 4(1), 015016.CrossRef
92.
Zurück zum Zitat Nouri, A., Hodgson, P. D., & Wen, C. (2010). Biomimetic porous titanium scaffolds for orthopedic and dental applications. In Biomimetics learning from nature. Nouri, A., Hodgson, P. D., & Wen, C. (2010). Biomimetic porous titanium scaffolds for orthopedic and dental applications. In Biomimetics learning from nature.
93.
Zurück zum Zitat Dai, Z., Nawaz, K., Park, Y., Chen, Q., & Jacobi, A. M. (2012). A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications. Heat Transfer Engineering, 33(1), 21–30.CrossRef Dai, Z., Nawaz, K., Park, Y., Chen, Q., & Jacobi, A. M. (2012). A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications. Heat Transfer Engineering, 33(1), 21–30.CrossRef
94.
Zurück zum Zitat Huisseune, H., De Schampheleire, S., Ameel, B., & De Paepe, M. (2015). Comparison of metal foam heat exchangers to a finned heat exchanger for low Reynolds number applications. International Journal of Heat and Mass Transfer, 89, 1–9.CrossRef Huisseune, H., De Schampheleire, S., Ameel, B., & De Paepe, M. (2015). Comparison of metal foam heat exchangers to a finned heat exchanger for low Reynolds number applications. International Journal of Heat and Mass Transfer, 89, 1–9.CrossRef
95.
Zurück zum Zitat Cardoso, E., & Oliveira, B. (2019). Study of the use of metallic foam in a vehicle for an energy economy racing circuit. Materialwissenschaft und Werkstofftechnik, 41, 257–264.CrossRef Cardoso, E., & Oliveira, B. (2019). Study of the use of metallic foam in a vehicle for an energy economy racing circuit. Materialwissenschaft und Werkstofftechnik, 41, 257–264.CrossRef
97.
Zurück zum Zitat Kremer, K,, Liszkiewicz, A., & Adkins, J. (2004). Development of steel foam materials and structures. US DOE and AISI final report DE-FC36-97ID13554 performed by Fraunhofer USA-Delaware Center for Manufacturing and Advanced Materials, Newark, DE. Kremer, K,, Liszkiewicz, A., & Adkins, J. (2004). Development of steel foam materials and structures. US DOE and AISI final report DE-FC36-97ID13554 performed by Fraunhofer USA-Delaware Center for Manufacturing and Advanced Materials, Newark, DE.
98.
Zurück zum Zitat Neugebauer, R., Hipke, T., Hohlfeld, J., Thümmler, R. (2005). Metal foam as a combination of lightweight engineering and damping. In R.F. Singer, C. Koerner, V. Alstaedt, H. Muenstedt (Eds.), Cellular metals and polymers 2004 (pp. 13–8). Neugebauer, R., Hipke, T., Hohlfeld, J., Thümmler, R. (2005). Metal foam as a combination of lightweight engineering and damping. In R.F. Singer, C. Koerner, V. Alstaedt, H. Muenstedt (Eds.), Cellular metals and polymers 2004 (pp. 13–8).
99.
Zurück zum Zitat Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. (2012). Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 71, 1–10.CrossRef Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. (2012). Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 71, 1–10.CrossRef
100.
Zurück zum Zitat Harte, A., Fleck, N. A., & Ashby, M. F. (2000). Sandwich panel design using aluminum alloy foam. Advanced Engineering Materials, 2, 219–222.CrossRef Harte, A., Fleck, N. A., & Ashby, M. F. (2000). Sandwich panel design using aluminum alloy foam. Advanced Engineering Materials, 2, 219–222.CrossRef
Metadaten
Titel
Introduction to Metallic Foams
verfasst von
Dr. Dipen Kumar Rajak
Prof. Manoj Gupta
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9069-6_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.