Skip to main content

2020 | OriginalPaper | Buchkapitel

2. Introduction to Modeling of Cement Hydrate at Nanoscale

verfasst von : Dongshuai Hou

Erschienen in: Molecular Simulation on Cement-Based Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The general background on the cement hydrate is introduced in this chapter. The characteristics of the C–S–H gel obtained by various experimental techniques are summarized firstly. This chapter also emphasizes on a series of theoretical models of C–S–H gel at nanoscale. Both the experimental and theoretical information provide the foundation for C–S–H model construction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, L. (2012). The structure study of calcium silicate hydrate (C–S–H) (QE report). Hong Kong University of Science and Technology. Zhang, L. (2012). The structure study of calcium silicate hydrate (C–S–H) (QE report). Hong Kong University of Science and Technology.
2.
3.
Zurück zum Zitat Bishop, M., Bott, S. G., & Barron, A. R. (2003). A new mechanism for cement hydration inhibition: Solid-state chemistry of calcium nitrilotris(methylene)triphosphonate. Chemistry of Materials, 15(16), 3074–3088. Bishop, M., Bott, S. G., & Barron, A. R. (2003). A new mechanism for cement hydration inhibition: Solid-state chemistry of calcium nitrilotris(methylene)triphosphonate. Chemistry of Materials, 15(16), 3074–3088.
4.
Zurück zum Zitat Groves, G. W. (1986). TEM studies of cement hydration. MRS Online Proceeding Library Archive, 85. Groves, G. W. (1986). TEM studies of cement hydration. MRS Online Proceeding Library Archive, 85.
5.
Zurück zum Zitat Nomat, A. (2004). The structure and stoichiometry of C–S–H. Cement and Concrete Research, 34, 1521–1528.CrossRef Nomat, A. (2004). The structure and stoichiometry of C–S–H. Cement and Concrete Research, 34, 1521–1528.CrossRef
6.
Zurück zum Zitat Costantinide, G., & Ulm, F. (2006). The nanogranular nature of C–S–H. Journal of Mechanics and Physics of Solids, 55, 64–90.CrossRef Costantinide, G., & Ulm, F. (2006). The nanogranular nature of C–S–H. Journal of Mechanics and Physics of Solids, 55, 64–90.CrossRef
7.
Zurück zum Zitat Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium silicate hydrate in cement. Nature Material, 6, 311–316.CrossRef Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium silicate hydrate in cement. Nature Material, 6, 311–316.CrossRef
8.
Zurück zum Zitat Richardson, I. J. (1999). The nature of C–S–H in hardened cements. Cement and Concrete Research, 29(8), 1131–1147.CrossRef Richardson, I. J. (1999). The nature of C–S–H in hardened cements. Cement and Concrete Research, 29(8), 1131–1147.CrossRef
9.
Zurück zum Zitat Richardson, I. G., & Groves, G. W. (1993). Microstructure and microanalysis of hardened ordinary Portland cement pastes. Journal of Material Science, 28, 265–277. Richardson, I. G., & Groves, G. W. (1993). Microstructure and microanalysis of hardened ordinary Portland cement pastes. Journal of Material Science, 28, 265–277.
10.
Zurück zum Zitat Hou, D., Ma, H., Zhu, Y., & Li, Z. (2014). Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties. Acta Materialia, 67, 81–94.CrossRef Hou, D., Ma, H., Zhu, Y., & Li, Z. (2014). Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties. Acta Materialia, 67, 81–94.CrossRef
11.
Zurück zum Zitat Hou, D. S., & Li, Z. J. (2014). Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: Case study of jennite. Journal of Materials in Civil Engineering, 26(5). Hou, D. S., & Li, Z. J. (2014). Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: Case study of jennite. Journal of Materials in Civil Engineering, 26(5).
12.
Zurück zum Zitat Ma, H., & Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Computer and Concrete, 11(4), 317–336.CrossRef Ma, H., & Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Computer and Concrete, 11(4), 317–336.CrossRef
13.
Zurück zum Zitat Wang, P. S., Ferguson, M. M., Eng, G., Bentz, D. P., Ferraris, C. F., & Clifton, J. R. (1998). 1H nuclear magnetic resonance characterization of Portland cement: Molecular diffusion of water studied by spin relaxation and relaxation time-weighted imaging. Journal of Material Science, 33, 3065–3071.CrossRef Wang, P. S., Ferguson, M. M., Eng, G., Bentz, D. P., Ferraris, C. F., & Clifton, J. R. (1998). 1H nuclear magnetic resonance characterization of Portland cement: Molecular diffusion of water studied by spin relaxation and relaxation time-weighted imaging. Journal of Material Science, 33, 3065–3071.CrossRef
14.
Zurück zum Zitat Rakiewicz, E. F., Benesi, A. J., Grutzeck, M. W., & Kwan, S. (1998). Determination of the state of water in hydrated cement phases using deuterium NMR spectroscopy. Journal of the American Chemical Society, 120(25), 6415–6416.CrossRef Rakiewicz, E. F., Benesi, A. J., Grutzeck, M. W., & Kwan, S. (1998). Determination of the state of water in hydrated cement phases using deuterium NMR spectroscopy. Journal of the American Chemical Society, 120(25), 6415–6416.CrossRef
15.
Zurück zum Zitat Greener, J., Peemoeller, H., Choi, C., Holly, R., Reardon, E. J., Hansson, C. M., et al. (2000). Monitoring of hydration of white cement paste with proton NMR spin–spin relaxation. Journal of the American Ceramic Society, 83(3), 623–627.CrossRef Greener, J., Peemoeller, H., Choi, C., Holly, R., Reardon, E. J., Hansson, C. M., et al. (2000). Monitoring of hydration of white cement paste with proton NMR spin–spin relaxation. Journal of the American Ceramic Society, 83(3), 623–627.CrossRef
16.
Zurück zum Zitat Bordallo, H. N., Aldridge, L. P., & Desmedt, A. (2006). Water dynamics in hardened ordinary Portland cement paste or concrete: From quasielastic neutron scattering. Journal of Physics and Chemistry B, 110, 17966–17976.CrossRef Bordallo, H. N., Aldridge, L. P., & Desmedt, A. (2006). Water dynamics in hardened ordinary Portland cement paste or concrete: From quasielastic neutron scattering. Journal of Physics and Chemistry B, 110, 17966–17976.CrossRef
17.
Zurück zum Zitat Korb, J. P., Monteilhet, L., McDonald, P. J., & Mitchell, J. (2007). Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach. Cement and Concrete Research, 37(3), 295–302.CrossRef Korb, J. P., Monteilhet, L., McDonald, P. J., & Mitchell, J. (2007). Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach. Cement and Concrete Research, 37(3), 295–302.CrossRef
18.
Zurück zum Zitat Brunauer, S., Kantro, D. L., & Copeland, L. E. (1958). The stoichiometry of the hydration of β-dicalcium silicate and tricalcium silicate at room temperature. Journal of the American Chemical Society, 80(4), 761–767.CrossRef Brunauer, S., Kantro, D. L., & Copeland, L. E. (1958). The stoichiometry of the hydration of β-dicalcium silicate and tricalcium silicate at room temperature. Journal of the American Chemical Society, 80(4), 761–767.CrossRef
19.
Zurück zum Zitat Jennings, H. M. (2008). Refinements to colloid model of C–S–H in cement: CM II. Cement and Concrete Research, 38(3), 275–289.CrossRef Jennings, H. M. (2008). Refinements to colloid model of C–S–H in cement: CM II. Cement and Concrete Research, 38(3), 275–289.CrossRef
20.
Zurück zum Zitat Hamid, S. (1981). The crystal structure of the 11 A natural tobermorite Ca2.25Si3O7.5(OH)1.5·H2O. Zeitschrifit fur Kristallographie, 154, 189–198. Hamid, S. (1981). The crystal structure of the 11 A natural tobermorite Ca2.25Si3O7.5(OH)1.5·H2O. Zeitschrifit fur Kristallographie, 154, 189–198.
21.
Zurück zum Zitat Garbev, K., Bornefeld, M., Beuchle, G., & Stemmermann, P. (2008). Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 2: X-ray and thermogravimetry study. Journal of the American Ceramic Society, 91(9), 3015–3023. Garbev, K., Bornefeld, M., Beuchle, G., & Stemmermann, P. (2008). Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 2: X-ray and thermogravimetry study. Journal of the American Ceramic Society, 91(9), 3015–3023.
22.
Zurück zum Zitat Garbev, K., Beuchle, G., Bornefeld, M., Black, L., & Stemmermann, P. (2008). Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 1: Synchrotron-based X-ray diffraction. Journal of the American Ceramic Society, 91(9), 3005–3014. Garbev, K., Beuchle, G., Bornefeld, M., Black, L., & Stemmermann, P. (2008). Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 1: Synchrotron-based X-ray diffraction. Journal of the American Ceramic Society, 91(9), 3005–3014.
23.
Zurück zum Zitat Renaudin, G., Russias, J., Leroux, F., Cau-dit-Coumes, C., & Frizon, F. (2009). Structural characterization of C–S–H and C–A–S–H samples—Part II: Local environment investigated by spectroscopic analyses. Journal of Solid State Chemistry, 182(12), 3320–3329.CrossRef Renaudin, G., Russias, J., Leroux, F., Cau-dit-Coumes, C., & Frizon, F. (2009). Structural characterization of C–S–H and C–A–S–H samples—Part II: Local environment investigated by spectroscopic analyses. Journal of Solid State Chemistry, 182(12), 3320–3329.CrossRef
24.
Zurück zum Zitat Gmira, A. (2003). Etude texturale et thermodynamique d’hydrates modèles du ciment. Orléans. Gmira, A. (2003). Etude texturale et thermodynamique d’hydrates modèles du ciment. Orléans.
25.
Zurück zum Zitat Grangeon, S., Claret, F., Lerouge, C., Warmont, F., Sato, T., Anraku, S., et al. (2013). On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite. Cement and Concrete Research, 52, 31–37.CrossRef Grangeon, S., Claret, F., Lerouge, C., Warmont, F., Sato, T., Anraku, S., et al. (2013). On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite. Cement and Concrete Research, 52, 31–37.CrossRef
26.
Zurück zum Zitat Alizadeh, R., Raki, L., Makar, J. M., Beaudoin, J. J., & Moudrakovski, I. (2009). Hydration of tricalcium silicate in the presence of synthetic calcium–silicate–hydrate. Journal of Materials Chemistry, 19(42), 7937–7946.CrossRef Alizadeh, R., Raki, L., Makar, J. M., Beaudoin, J. J., & Moudrakovski, I. (2009). Hydration of tricalcium silicate in the presence of synthetic calcium–silicate–hydrate. Journal of Materials Chemistry, 19(42), 7937–7946.CrossRef
27.
Zurück zum Zitat Cong, X., & Kirkpatrick, R. J. (1995). Effects of the temperature and relative humidity on the structure of C–S–H gel. Cement and Concrete Research, 25(6), 1237–1245.CrossRef Cong, X., & Kirkpatrick, R. J. (1995). Effects of the temperature and relative humidity on the structure of C–S–H gel. Cement and Concrete Research, 25(6), 1237–1245.CrossRef
28.
Zurück zum Zitat Gmira, A. (2003). Etude textural et thermodynamique d’hydrates modeles du ciment. Ph.D. thesis, Universite D Orieans, France. Gmira, A. (2003). Etude textural et thermodynamique d’hydrates modeles du ciment. Ph.D. thesis, Universite D Orieans, France.
29.
Zurück zum Zitat Grangeon, S., Claret, F., Linard, Y., & Chiaberge, C. (2013). X-ray diffraction: A powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallographica Section B: Structural Science Crystal Engineering. Grangeon, S., Claret, F., Linard, Y., & Chiaberge, C. (2013). X-ray diffraction: A powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallographica Section B: Structural Science Crystal Engineering.
30.
Zurück zum Zitat Minet, J., Abramson, S., Bresson, B., Sanchez, C., Montouillout, V., & Lequeux, N. (2004). New layered calcium organosilicate hybrids with covalently linked organic functionalities. Chemistry of Materials, 16(20), 3955–3962.CrossRef Minet, J., Abramson, S., Bresson, B., Sanchez, C., Montouillout, V., & Lequeux, N. (2004). New layered calcium organosilicate hybrids with covalently linked organic functionalities. Chemistry of Materials, 16(20), 3955–3962.CrossRef
31.
Zurück zum Zitat Minet, J., Abramson, S., Bresson, B., Franceschini, A., Van Damme, H., & Lequeux, N. (2006). Organic calcium silicate hydrate hybrids: A new approach to cement based nanocomposites. Journal of Materials Chemistry, 16(14), 1379–1383.CrossRef Minet, J., Abramson, S., Bresson, B., Franceschini, A., Van Damme, H., & Lequeux, N. (2006). Organic calcium silicate hydrate hybrids: A new approach to cement based nanocomposites. Journal of Materials Chemistry, 16(14), 1379–1383.CrossRef
32.
Zurück zum Zitat Stumm, A., Garbev, K., Beuchle, G., Black, L., Stemmermann, P., & Nüesch, R. (2005). Incorporation of zinc into calcium silicate hydrates. Part I: Formation of CSH (I) with C/S = 2/3 and its isochemical counterpart gyrolite. Cement and Concrete Research, 35(9), 1665–1675.CrossRef Stumm, A., Garbev, K., Beuchle, G., Black, L., Stemmermann, P., & Nüesch, R. (2005). Incorporation of zinc into calcium silicate hydrates. Part I: Formation of CSH (I) with C/S = 2/3 and its isochemical counterpart gyrolite. Cement and Concrete Research, 35(9), 1665–1675.CrossRef
33.
Zurück zum Zitat Sugiyama, T., Ritthichauy, W., & Tsuji, Y. (2008). Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete. Cement and Concrete Research, 38(1), 49–67.CrossRef Sugiyama, T., Ritthichauy, W., & Tsuji, Y. (2008). Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete. Cement and Concrete Research, 38(1), 49–67.CrossRef
34.
Zurück zum Zitat García-Lodeiro, I., Fernández-Jiménez, A., Sobrados, I., Sanz, J., & Palomo, A. (2012). C–S–H gels: Interpretation of 29Si MAS-NMR Spectra. Journal of the American Ceramic Society, 95(4), 1551–2916.CrossRef García-Lodeiro, I., Fernández-Jiménez, A., Sobrados, I., Sanz, J., & Palomo, A. (2012). C–S–H gels: Interpretation of 29Si MAS-NMR Spectra. Journal of the American Ceramic Society, 95(4), 1551–2916.CrossRef
35.
Zurück zum Zitat Chen, J. J., Thomas, J. J., Taylor, H. F. W., & Jennings, H. M. (2004). Solubility and structure of calcium silicate hydrate. Cement and Concrete Research, 34(9), 1499–1519.CrossRef Chen, J. J., Thomas, J. J., Taylor, H. F. W., & Jennings, H. M. (2004). Solubility and structure of calcium silicate hydrate. Cement and Concrete Research, 34(9), 1499–1519.CrossRef
36.
Zurück zum Zitat Cong, X., & Kirkpatrick, R. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Material, 3(3–4), 144–156.CrossRef Cong, X., & Kirkpatrick, R. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Material, 3(3–4), 144–156.CrossRef
37.
Zurück zum Zitat Macphee, D. E., Lachowski, E. E., & Glasser, F. P. (1998). Polymerization effects in C–S–H: Implications for Portland cement hydration. Advances in Cement Research, 1(3), 131–137.CrossRef Macphee, D. E., Lachowski, E. E., & Glasser, F. P. (1998). Polymerization effects in C–S–H: Implications for Portland cement hydration. Advances in Cement Research, 1(3), 131–137.CrossRef
38.
Zurück zum Zitat Alizadeh, R. A. (2009). Nanostructure and engineering properties of basic and modified calcium silicate hydrate systems. Ph.D. thesis of University of Ottawa. Alizadeh, R. A. (2009). Nanostructure and engineering properties of basic and modified calcium silicate hydrate systems. Ph.D. thesis of University of Ottawa.
39.
Zurück zum Zitat Pellenq, R. J. M., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., & Yip, S. (2009). A realistic molecular model of cement hydrates. PNAS, 106(38), 16102–16107.CrossRef Pellenq, R. J. M., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., & Yip, S. (2009). A realistic molecular model of cement hydrates. PNAS, 106(38), 16102–16107.CrossRef
40.
Zurück zum Zitat Groves, G. (1987). TEM studies of cement hydration. Materials Research Society Symposium Proceedings, 85, 3–12.CrossRef Groves, G. (1987). TEM studies of cement hydration. Materials Research Society Symposium Proceedings, 85, 3–12.CrossRef
41.
Zurück zum Zitat Bonaccorsi, E., Merlino, S., & Taylor, H. F. W. (2004). The crystal structure of Jennite Ca9Si6O18(OH)6·8H2O. Cement and Concrete Research, 34(9), 1481–1488.CrossRef Bonaccorsi, E., Merlino, S., & Taylor, H. F. W. (2004). The crystal structure of Jennite Ca9Si6O18(OH)6·8H2O. Cement and Concrete Research, 34(9), 1481–1488.CrossRef
42.
Zurück zum Zitat Shahsavari, R., Buechler, M. J., Pellenq, R. J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of American Ceramic Society, 92(10), 2323–2330.CrossRef Shahsavari, R., Buechler, M. J., Pellenq, R. J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of American Ceramic Society, 92(10), 2323–2330.CrossRef
43.
Zurück zum Zitat Merlino, S., Bonnacorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11 A: Normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577–590.CrossRef Merlino, S., Bonnacorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11 A: Normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577–590.CrossRef
44.
Zurück zum Zitat Aligizaki, K. K. (2006). Pore structure of cement-based materials: Testing, interpretation and requirements. CRC Press. Aligizaki, K. K. (2006). Pore structure of cement-based materials: Testing, interpretation and requirements. CRC Press.
45.
Zurück zum Zitat Powers, T. C., & Brownyard, L. (1946). Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, 43. Powers, T. C., & Brownyard, L. (1946). Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, 43.
46.
Zurück zum Zitat Feldman, R. F., & Sereda, J. P. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction, 1(6), 509–520. Feldman, R. F., & Sereda, J. P. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction, 1(6), 509–520.
47.
Zurück zum Zitat Wittmann, F. H. (1979). Trends in research on creep and shrinkage of concrete. Cement Production and Use, 143–161. Wittmann, F. H. (1979). Trends in research on creep and shrinkage of concrete. Cement Production and Use, 143–161.
48.
Zurück zum Zitat Jennings, H. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 30, 101–116.CrossRef Jennings, H. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 30, 101–116.CrossRef
49.
Zurück zum Zitat Costantinides, G., & Ulm, F. (2004). The effect of two types of C–S–H on the elasticity of cement-based materials: Result from nanoindentation and micromechanical modeling. Cement and Concrete Research, 34, 67–80.CrossRef Costantinides, G., & Ulm, F. (2004). The effect of two types of C–S–H on the elasticity of cement-based materials: Result from nanoindentation and micromechanical modeling. Cement and Concrete Research, 34, 67–80.CrossRef
50.
Zurück zum Zitat Bernal, J. D., Jeffery, J. W., & Taylor, H. F. W. (1952). Crystallographic research on the hydration of Portland cement. A first report on investigations in progress. Magazine of Concrete Research, 4(11), 49–54. Bernal, J. D., Jeffery, J. W., & Taylor, H. F. W. (1952). Crystallographic research on the hydration of Portland cement. A first report on investigations in progress. Magazine of Concrete Research, 4(11), 49–54.
51.
Zurück zum Zitat Taylor, H. F. W., & Howison, J. W. (1956). Relationships between calcium silicates and clay minerals. Clay Minerals Bulletin, 3, 98–111.CrossRef Taylor, H. F. W., & Howison, J. W. (1956). Relationships between calcium silicates and clay minerals. Clay Minerals Bulletin, 3, 98–111.CrossRef
52.
Zurück zum Zitat Kantro, D. L., Brunauer, S., & Weise, C. H. (1962). Development of surface in the hydration of calcium silicates. II. Extension of investigations to earlier and later stages of hydration. The Journal of Physical Chemistry, 66(10), 1804–1809. Kantro, D. L., Brunauer, S., & Weise, C. H. (1962). Development of surface in the hydration of calcium silicates. II. Extension of investigations to earlier and later stages of hydration. The Journal of Physical Chemistry, 66(10), 1804–1809.
53.
Zurück zum Zitat Stade, H. (1980). On the structure of ill-crystallized calcium hydrogen silicates. 2. A phase consisting of polysilicate and disilicate. Zeitschrift fur Anorganische und Allgemeine Chemie, 470(11), 69–83. Stade, H. (1980). On the structure of ill-crystallized calcium hydrogen silicates. 2. A phase consisting of polysilicate and disilicate. Zeitschrift fur Anorganische und Allgemeine Chemie, 470(11), 69–83.
54.
Zurück zum Zitat Cong, X., & Kirkpatrick, R. J. (1996). 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrate. Advances in Cement Based Materials, 3(3), 133–143.CrossRef Cong, X., & Kirkpatrick, R. J. (1996). 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrate. Advances in Cement Based Materials, 3(3), 133–143.CrossRef
55.
Zurück zum Zitat Grutzeck, M. W. (1999). A new model for the formation of calcium silicate hydrate (CSH). Material Research Innovations, 3(3), 160–170.CrossRef Grutzeck, M. W. (1999). A new model for the formation of calcium silicate hydrate (CSH). Material Research Innovations, 3(3), 160–170.CrossRef
56.
Zurück zum Zitat Viehland, D., Yuan, L. J., Xu, Z., Cong, X. D., & Kirkpatrick, R. J. (1997). Structural studies of jennite and 1.4 nm tobermorite: Disordered layering along the [100] of jennite. Journal of the American Ceramic Society, 80(12), 3021–3028. Viehland, D., Yuan, L. J., Xu, Z., Cong, X. D., & Kirkpatrick, R. J. (1997). Structural studies of jennite and 1.4 nm tobermorite: Disordered layering along the [100] of jennite. Journal of the American Ceramic Society, 80(12), 3021–3028.
57.
Zurück zum Zitat Taylor, H. F. (1986). Proposed structure for calcium silicate hydrate gel. Journal of the American Ceramic Society, 69(6), 464–467.CrossRef Taylor, H. F. (1986). Proposed structure for calcium silicate hydrate gel. Journal of the American Ceramic Society, 69(6), 464–467.CrossRef
58.
Zurück zum Zitat Richardson, I. G. (2004). Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, h-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol. Cement and Concrete Research, 34(9), 1733–1777.CrossRef Richardson, I. G. (2004). Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, h-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol. Cement and Concrete Research, 34(9), 1733–1777.CrossRef
59.
Zurück zum Zitat Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J. M., & Van Vliet, K. J. (2012). Thermodynamics of water confined porous calcium silicate hydrate. Langmuir, 28(31), 11422–11432.CrossRef Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J. M., & Van Vliet, K. J. (2012). Thermodynamics of water confined porous calcium silicate hydrate. Langmuir, 28(31), 11422–11432.CrossRef
60.
Zurück zum Zitat Manzano, H., Moeini, S., Marinelli, F., van Duin, A. C. T., Ulm, F. J., & Pellenq, R. J. M. (2011). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemistry Society, 134(4), 2208–2215.CrossRef Manzano, H., Moeini, S., Marinelli, F., van Duin, A. C. T., Ulm, F. J., & Pellenq, R. J. M. (2011). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemistry Society, 134(4), 2208–2215.CrossRef
61.
Zurück zum Zitat Manzano, H., Masoero, E., Arbeloa, I. L., & Jennings, H. M. (2013). Molecular modelling of shear deformations in ordered and disordered calcium silicate hydrates. Soft Matter, 9(30), 7333–7341.CrossRef Manzano, H., Masoero, E., Arbeloa, I. L., & Jennings, H. M. (2013). Molecular modelling of shear deformations in ordered and disordered calcium silicate hydrates. Soft Matter, 9(30), 7333–7341.CrossRef
Metadaten
Titel
Introduction to Modeling of Cement Hydrate at Nanoscale
verfasst von
Dongshuai Hou
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8711-1_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.