Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

1. Introduction to the Principles of Cement and Concrete Composites

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

More advanced techniques have been proposed for construction purposes and improvement cement because of the global sustainability demand. Alongside the integrations of positive policies, emission reductions for all infrastructural projects can be achieved when there shall be swift scale-up in the novel cement use. The book explores techniques such as self-consolidating and advanced nano cements, green cement, and steel fiber reinforcements and how they contribute to construction cost reductions and environmental sustainability. In comparison with the traditional cement, improved multifunctional nano-engineered concretes exhibit advanced functionalities. They for example have up to 146% and 76.5% respective compressive and flexural strengths. They also have improved electrical and thermos-mechanical performances with considerable declines in absorption of waters of about 400%. Technologies of modern engineering aim at generating multifunctional and ultra-high performance concrete substances because of the increased demands for cost-effectiveness, sustainability, and durability. Such building materials are marked by long-term performances and advanced mechanical characteristics. Also, they incorporate characteristics that promote different uses making them sustainable for future applications. Advanced concrete composites are important in multifunctional uses such as in chemical and marine exposed environments because of their high corrosion resistance, affordability, high durability, and lightweight nature. Composite materials (combinations of aggregates) offer an in-built mixture of toughness and stiffness with corrosion resistance and lightweight properties. Such materials are obtained from various compositions with different physical and chemical characteristics. Combinations of such concretes give special capability that gives composite materials an advantage over other improvement methods. Major classifications are explained below:
1.
Reinforcement-based composites: The first categorization is founded on reinforcements. Examples are particle-reinforced materials, fiber-reinforced materials, and sheet-reinforced materials. Fiber can be taken from synthetic fibers or organic components such as basalts, carbon, and glasses. Particle-reinforced concretes are categorized into dispersion and large particles. One of the largest particle composites is concrete mixture with gravels and sands. Particle-reinforced concretes have the benefits of production ease and low costs, while particle-reinforced concretes do not perform better than fiber-reinforced composites. Sheet reinforcements comprise glasses. Glass fiber-reinforced concretes are fiber-reinforced concrete forms consisting of alkali-resistant and high-strength glass fibers distributed into composite matrix. An example of concrete composites founded on reinforcements is RPC. It consists of fine grains of silica fumes, quartz, sand, and cement. Also, it has components of steel fibers and superplasticizers.
 
2.
Matrix phase-based composites: The second composite classification is founded on the matrix phases. Matrix phase-based composites include metal matrix composite, ceramic matrix composite, and polymer matrix composite. Ceramic matrix composites, also known as inverse composites, are custom-made to overcome the challenges of brittleness and monolithic ceramics. They consist of fibers of silicon carbide, silicon nitride (SiN), and aluminum oxide (Al2O3). Metal matrix composites (MMCs) consist of metallic reinforcement of aluminum (Al), titanium (Ti), magnesium (Mg), and copper (Cu). Polymer matrix composites (PMCs) have matrices as their components scattered with metal fibers, carbon, and glasses.
 
3.
Nanoscale-based composite: The last classification of composite is based on scales. Bio-composites and nanocomposites are the two types. The nanocomposite involves material mixing and improvements at the nanoscales that result in concretes with exceptional qualities. The demands for bio-composite are for ecological sustainability and biodegradability because they can be obtained from fibers of sugar palms reinforced in matrices of sago starches.
 

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aalbers TG, van der Sloot HA, Goumans JJJM (eds) (1994) Environmental aspects of construction with waste materials. Elsevier Aalbers TG, van der Sloot HA, Goumans JJJM (eds) (1994) Environmental aspects of construction with waste materials. Elsevier
Zurück zum Zitat Akcay B, Tasdemir MA (2010) Effects of distribution of lightweight aggregates on internal curing of concrete. Cem Concr Compos 32(8):611–616 Akcay B, Tasdemir MA (2010) Effects of distribution of lightweight aggregates on internal curing of concrete. Cem Concr Compos 32(8):611–616
Zurück zum Zitat Beushausen H, Gillmer M, Alexander M (2014) The influence of superabsorbent polymers on strength and durability properties of blended cement mortars. Cem Concr Compos 52:73–80 Beushausen H, Gillmer M, Alexander M (2014) The influence of superabsorbent polymers on strength and durability properties of blended cement mortars. Cem Concr Compos 52:73–80
Zurück zum Zitat Chen Q et al. (2018) A stochastic micromechanical model for fiber-reinforced concrete using maximum entropy principle. Acta Mech 229(7):2719–2735 Chen Q et al. (2018) A stochastic micromechanical model for fiber-reinforced concrete using maximum entropy principle. Acta Mech 229(7):2719–2735
Zurück zum Zitat D’Alessandro A et al (2016) Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cem Concr Compos 65:200–213 D’Alessandro A et al (2016) Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cem Concr Compos 65:200–213
Zurück zum Zitat Demis S, Efstathiou M, Papadakis V (2014) Computer-aided modeling of concrete service life. Cem Concr Compos 47:9–18 Demis S, Efstathiou M, Papadakis V (2014) Computer-aided modeling of concrete service life. Cem Concr Compos 47:9–18
Zurück zum Zitat di Prisco M, Matteo C, Daniele D (2013) Fibre‐reinforced concrete in fib model code 2010: principles, models and test validation. Struct Concr 14(4):342–361 di Prisco M, Matteo C, Daniele D (2013) Fibre‐reinforced concrete in fib model code 2010: principles, models and test validation. Struct Concr 14(4):342–361
Zurück zum Zitat Guo Z (2014) Principles of reinforced concrete. Butterworth-Heinemann Guo Z (2014) Principles of reinforced concrete. Butterworth-Heinemann
Zurück zum Zitat Hakim II, Putra N, Agustin PD (2020) Measurement of PCM-concrete composites thermal properties for energy conservation in building material. AIP Conf Proc. 2255(1) Hakim II, Putra N, Agustin PD (2020) Measurement of PCM-concrete composites thermal properties for energy conservation in building material. AIP Conf Proc. 2255(1)
Zurück zum Zitat Han B et al. (2014) Nanotip-induced ultrahigh pressure-sensitive composites: principles, properties and applications. Compos Part A Appl Sci Manuf 59:105–114 Han B et al. (2014) Nanotip-induced ultrahigh pressure-sensitive composites: principles, properties and applications. Compos Part A Appl Sci Manuf 59:105–114
Zurück zum Zitat Han B et al. (2019) Nano-engineered cementitious composites: principles and practices. Springer Han B et al. (2019) Nano-engineered cementitious composites: principles and practices. Springer
Zurück zum Zitat Harbulakova VO et al. (2014) Different aggressive media influence related to selected characteristics of concrete composites investigation. Int J Energy Environ Eng 5(2–3):82 Harbulakova VO et al. (2014) Different aggressive media influence related to selected characteristics of concrete composites investigation. Int J Energy Environ Eng 5(2–3):82
Zurück zum Zitat Jones CA, Grasley ZC (2011) Short-term creep of cement paste during nanoindentation. Cem Concr Compos 33(1):12–18 Jones CA, Grasley ZC (2011) Short-term creep of cement paste during nanoindentation. Cem Concr Compos 33(1):12–18
Zurück zum Zitat Karakurt C, Kurama H, Topcu IB (2010) Utilization of natural zeolite in aerated concrete production. Cem Concr Compos 32(1):1–8 Karakurt C, Kurama H, Topcu IB (2010) Utilization of natural zeolite in aerated concrete production. Cem Concr Compos 32(1):1–8
Zurück zum Zitat Kawashima S, Shah SP (2011) Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cem Concr Compos 33(2):201–208 Kawashima S, Shah SP (2011) Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cem Concr Compos 33(2):201–208
Zurück zum Zitat Kene KS, Vairagade VS, Sathawane S (2012). Experimental study on behavior of steel and glass fiber reinforced concrete composites. Bonfring Int J Ind Eng Manage Sci 2(4):125–130 Kene KS, Vairagade VS, Sathawane S (2012). Experimental study on behavior of steel and glass fiber reinforced concrete composites. Bonfring Int J Ind Eng Manage Sci 2(4):125–130
Zurück zum Zitat Klyuev SV et al (2018) The fiber-reinforced concrete constructions experimental research. Mater Sci Forum 931 Klyuev SV et al (2018) The fiber-reinforced concrete constructions experimental research. Mater Sci Forum 931
Zurück zum Zitat Lai WL et al. (2010) Characterization of the deterioration of externally bonded CFRP-concrete composites using quantitative infrared thermography. Cem Concr Compos 32(9):740–746 Lai WL et al. (2010) Characterization of the deterioration of externally bonded CFRP-concrete composites using quantitative infrared thermography. Cem Concr Compos 32(9):740–746
Zurück zum Zitat Lamond J F, Pielert J H (2006). Significance of tests and properties of concrete and concrete-making materials. ASTM, West Conshohocken, PA Lamond J F, Pielert J H (2006). Significance of tests and properties of concrete and concrete-making materials. ASTM, West Conshohocken, PA
Zurück zum Zitat Li J, Yang E–H (2017) Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Cem Concr Compos 78:33–42 Li J, Yang E–H (2017) Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Cem Concr Compos 78:33–42
Zurück zum Zitat Lura P, Terrasi GP (2014) Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers: Small scale fire tests of carbon fiber reinforced plastic-prestressed self-compacting concrete. Cem Concr Compos 49:36–42 Lura P, Terrasi GP (2014) Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers: Small scale fire tests of carbon fiber reinforced plastic-prestressed self-compacting concrete. Cem Concr Compos 49:36–42
Zurück zum Zitat Makul N, Rattanadecho P, Agrawal DK (2014) Applications of microwave energy in cement and concrete—a review. Renew Sustain Energy Rev 37:715–733 Makul N, Rattanadecho P, Agrawal DK (2014) Applications of microwave energy in cement and concrete—a review. Renew Sustain Energy Rev 37:715–733
Zurück zum Zitat Materazzi AL, Ubertini F, D’Alessandro A (2013) Carbon nanotube cement-based transducers for dynamic sensing of strain. Cem Concr Compos 37:2–11 Materazzi AL, Ubertini F, D’Alessandro A (2013) Carbon nanotube cement-based transducers for dynamic sensing of strain. Cem Concr Compos 37:2–11
Zurück zum Zitat Mo L, Deng M, Wang A (2012) Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cem Concr Compos 34(3):377–383 Mo L, Deng M, Wang A (2012) Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cem Concr Compos 34(3):377–383
Zurück zum Zitat Murtazaev SY et al. (2018) Impact of technogenic raw materials on the properties of high-quality concrete composites. In: International symposium engineering and earth sciences: applied and fundamental research (ISEES 2018). Atlantis Press Murtazaev SY et al. (2018) Impact of technogenic raw materials on the properties of high-quality concrete composites. In: International symposium engineering and earth sciences: applied and fundamental research (ISEES 2018). Atlantis Press
Zurück zum Zitat Novak J, Kohoutkova A (2018) Mechanical properties of concrete composites subject to elevated temperature. Fire Safety J 95:66–76 Novak J, Kohoutkova A (2018) Mechanical properties of concrete composites subject to elevated temperature. Fire Safety J 95:66–76
Zurück zum Zitat Ohama Y (2011) Concrete-polymer composites–the past, present and future. Key Eng Mater 466 Ohama Y (2011) Concrete-polymer composites–the past, present and future. Key Eng Mater 466
Zurück zum Zitat Otero-Chans D et al. (2018) Experimental analysis of glued-in steel plates used as shear connectors in timber-concrete-composites. Eng Struct 170:1–10 Otero-Chans D et al. (2018) Experimental analysis of glued-in steel plates used as shear connectors in timber-concrete-composites. Eng Struct 170:1–10
Zurück zum Zitat Pan X et al. (2018) Effect of inorganic surface treatment on surface hardness and carbonation of cement-based materials. Cem Concr Compos 90:218–224 Pan X et al. (2018) Effect of inorganic surface treatment on surface hardness and carbonation of cement-based materials. Cem Concr Compos 90:218–224
Zurück zum Zitat Pereira EB, Fischer G, Barros JA (2012) Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites. Cem Concr Compos 34(10):1114–1123 Pereira EB, Fischer G, Barros JA (2012) Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites. Cem Concr Compos 34(10):1114–1123
Zurück zum Zitat Pourjavadi A et al (2013) Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles. Cem Concr Compos 37:196–204 Pourjavadi A et al (2013) Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles. Cem Concr Compos 37:196–204
Zurück zum Zitat Proske T et al (2018) Concretes made of efficient multi-composite cements with slag and limestone. Cem Concr Compos 89:107–119 Proske T et al (2018) Concretes made of efficient multi-composite cements with slag and limestone. Cem Concr Compos 89:107–119
Zurück zum Zitat Qiu Y et al (2013) Review on composite structural health monitoring based on fiber Bragg grating sensing principle. J Shanghai Jiaotong Univ (Sci) 18(2):129–139 Qiu Y et al (2013) Review on composite structural health monitoring based on fiber Bragg grating sensing principle. J Shanghai Jiaotong Univ (Sci) 18(2):129–139
Zurück zum Zitat Snoeck D, Pel L, De Belie N (2018) Superabsorbent polymers to mitigate plastic drying shrinkage in a cement paste as studied by NMR. Cem Concr Compos 93:54–62 Snoeck D, Pel L, De Belie N (2018) Superabsorbent polymers to mitigate plastic drying shrinkage in a cement paste as studied by NMR. Cem Concr Compos 93:54–62
Zurück zum Zitat Song Q et al (2018) Steel fibre content and interconnection induced electrochemical corrosion of ultra-high performance fibre reinforced concrete (UHPFRC). Cem Concr Compos 94:191–200 Song Q et al (2018) Steel fibre content and interconnection induced electrochemical corrosion of ultra-high performance fibre reinforced concrete (UHPFRC). Cem Concr Compos 94:191–200
Zurück zum Zitat Szajerski P et al. (2020) Radiation induced strength enhancement of sulfur polymer concrete composites based on waste and residue fillers. J Clean Prod 271:122563 Szajerski P et al. (2020) Radiation induced strength enhancement of sulfur polymer concrete composites based on waste and residue fillers. J Clean Prod 271:122563
Zurück zum Zitat Ulm F-J et al (2010) Does microstructure matter for statistical nanoindentation techniques?. Cem Concr Compos 32(1):92–99 Ulm F-J et al (2010) Does microstructure matter for statistical nanoindentation techniques?. Cem Concr Compos 32(1):92–99
Zurück zum Zitat Wang X et al (2020) Interfacial characteristics of nano-engineered concrete composites. Constr Build Mater 259:119803 Wang X et al (2020) Interfacial characteristics of nano-engineered concrete composites. Constr Build Mater 259:119803
Zurück zum Zitat Wetzel A, Middendorf B (2019) Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem Concr Compos 100:53–59 Wetzel A, Middendorf B (2019) Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem Concr Compos 100:53–59
Zurück zum Zitat Won M, Cho Y H, Tayabji S, Yuan J (2009) New technologies in construction and rehabilitation of Portland cement concrete pavement and bridge deck pavement. Am Soc Civ Eng Won M, Cho Y H, Tayabji S, Yuan J (2009) New technologies in construction and rehabilitation of Portland cement concrete pavement and bridge deck pavement. Am Soc Civ Eng
Zurück zum Zitat Wu C-R et al (2018) Improving the properties of recycled concrete aggregate with bio-deposition approach. Cem Concr Compos 94:248–254 Wu C-R et al (2018) Improving the properties of recycled concrete aggregate with bio-deposition approach. Cem Concr Compos 94:248–254
Zurück zum Zitat Wyrzykowski M, Lura P (2013) Controlling the coefficient of thermal expansion of cementitious materials–a new application for superabsorbent polymers. Cem Concr Compos 35(1):49–58 Wyrzykowski M, Lura P (2013) Controlling the coefficient of thermal expansion of cementitious materials–a new application for superabsorbent polymers. Cem Concr Compos 35(1):49–58
Zurück zum Zitat Yang Z et al (2017) In-situ X-ray computed tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of concrete. Cem Concr Compos 75:74–83 Yang Z et al (2017) In-situ X-ray computed tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of concrete. Cem Concr Compos 75:74–83
Zurück zum Zitat Zajac M et al (2018) Impact of microstructure on the performance of composite cements: why higher total porosity can result in higher strength. Cem Concr Compos 90:178–192 Zajac M et al (2018) Impact of microstructure on the performance of composite cements: why higher total porosity can result in higher strength. Cem Concr Compos 90:178–192
Metadaten
Titel
Introduction to the Principles of Cement and Concrete Composites
verfasst von
Natt Makul
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-69602-3_1