Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy consumption is increasing worldwide by approx. 2.3 % every year (Global Energy Trends—BP Statistical Review, 2014 [1]). The primary energy sources are petroleum (~36.0 %), coal (~27.4 %) and natural gas (~23.0 %). In total, 86.4 % energy consumption is met by the consumption of fossil fuels. The burning of fossil fuels emits around 21.3 billion tons of carbon dioxide (CO2) in the atmosphere per year and hence leads to serious environmental effects such as global warming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Park S, Bézier D, Brookhart M (2012) An efficient iridium catalyst for reduction of carbon dioxide to methane with trialkylsilanes. J Am Chem Soc 134:11404–11407CrossRef Park S, Bézier D, Brookhart M (2012) An efficient iridium catalyst for reduction of carbon dioxide to methane with trialkylsilanes. J Am Chem Soc 134:11404–11407CrossRef
3.
Zurück zum Zitat In S-I, Vaughn DD, Schaak RE (2012) Hybrid CuO–TiO2–xNx hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. Angew Chem 124:3981–3984CrossRef In S-I, Vaughn DD, Schaak RE (2012) Hybrid CuO–TiO2–xNx hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. Angew Chem 124:3981–3984CrossRef
4.
Zurück zum Zitat Li W (2010) Electrocatalytic reduction of CO2 to small organic molecule fuels on metal catalysts. ChemInform 1056:55–76 Li W (2010) Electrocatalytic reduction of CO2 to small organic molecule fuels on metal catalysts. ChemInform 1056:55–76
5.
Zurück zum Zitat Earl Boysen NCM (2011) Nanotechnology for dummies. 2nd edn Earl Boysen NCM (2011) Nanotechnology for dummies. 2nd edn
6.
Zurück zum Zitat Zhang ZY, Maekawa T (1993) Kinetic study on fermentation from CO2 and H2 using the acclimated-methanogen in batch culture. Biomass Bioenergy 4:439–446CrossRef Zhang ZY, Maekawa T (1993) Kinetic study on fermentation from CO2 and H2 using the acclimated-methanogen in batch culture. Biomass Bioenergy 4:439–446CrossRef
7.
Zurück zum Zitat Dodge E (2014) Carbon dioxide can be a resource rather than a waste product Dodge E (2014) Carbon dioxide can be a resource rather than a waste product
8.
Zurück zum Zitat Brilman W, Alba LG, Veneman R (2013) Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass Bioenergy 53:39–47CrossRef Brilman W, Alba LG, Veneman R (2013) Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass Bioenergy 53:39–47CrossRef
9.
Zurück zum Zitat Ferry JG (1994) Methanogenesis: ecology, physiology, biochemistry & genetics. Springer Ferry JG (1994) Methanogenesis: ecology, physiology, biochemistry & genetics. Springer
10.
Zurück zum Zitat Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189CrossRef Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189CrossRef
11.
Zurück zum Zitat Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press
12.
Zurück zum Zitat Feist AM, Scholten JC, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2 Feist AM, Scholten JC, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2
13.
Zurück zum Zitat Tsao JH, Kaneshiro SM, Yu SS, Clark DS (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. Biotechnol Bioeng 43:258–261CrossRef Tsao JH, Kaneshiro SM, Yu SS, Clark DS (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. Biotechnol Bioeng 43:258–261CrossRef
14.
Zurück zum Zitat Whitman W, Ankwanda E, Wolfe R (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863 Whitman W, Ankwanda E, Wolfe R (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863
15.
Zurück zum Zitat Zeikus J, Fuchs G, Kenealy W, Thauer R (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613 Zeikus J, Fuchs G, Kenealy W, Thauer R (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613
16.
Zurück zum Zitat Thauer RK (2012) The Wolfe cycle comes full circle. Proc Natl Acad Sci 109:15084–15085CrossRef Thauer RK (2012) The Wolfe cycle comes full circle. Proc Natl Acad Sci 109:15084–15085CrossRef
17.
Zurück zum Zitat Jones WJ, Paynter MJB, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97CrossRef Jones WJ, Paynter MJB, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97CrossRef
18.
Zurück zum Zitat Lie TJ, Wood GE, Leigh JA (2005) Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators. J Biol Chem 280:5236–5241CrossRef Lie TJ, Wood GE, Leigh JA (2005) Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators. J Biol Chem 280:5236–5241CrossRef
19.
Zurück zum Zitat Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, et al. (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969 Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, et al. (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969
20.
Zurück zum Zitat Moore BC, Leigh JA (2005) Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol 187:972–979CrossRef Moore BC, Leigh JA (2005) Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol 187:972–979CrossRef
21.
Zurück zum Zitat Porat I, Kim W, Hendrickson EL, Xia Q, Zhang Y, Wang T, Taub F, Moore BC, Anderson IJ, Hackett M et al (2006) Disruption of the operon encoding Ehb hydrogenase limits anabolic CO2 assimilation in the archaeon Methanococcus maripaludis. J Bacteriol 188:1373–1380CrossRef Porat I, Kim W, Hendrickson EL, Xia Q, Zhang Y, Wang T, Taub F, Moore BC, Anderson IJ, Hackett M et al (2006) Disruption of the operon encoding Ehb hydrogenase limits anabolic CO2 assimilation in the archaeon Methanococcus maripaludis. J Bacteriol 188:1373–1380CrossRef
22.
Zurück zum Zitat Wood GE, Haydock AK, Leigh JA (2003) Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 185:2548–2554CrossRef Wood GE, Haydock AK, Leigh JA (2003) Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 185:2548–2554CrossRef
23.
Zurück zum Zitat Argyle JL, Tumbula DL, Leigh JA (1996) Neomycin resistance as a selectable marker in Methanococcus maripaludis. Appl Environ Microbiol 62:4233–4237 Argyle JL, Tumbula DL, Leigh JA (1996) Neomycin resistance as a selectable marker in Methanococcus maripaludis. Appl Environ Microbiol 62:4233–4237
24.
Zurück zum Zitat Tumbula DL, Makula RA, Whitman WB (1994) Transformation of Methanococcus maripaludis and identification of a Pst I-like restriction system. FEMS Microbiol Lett 121:309–314CrossRef Tumbula DL, Makula RA, Whitman WB (1994) Transformation of Methanococcus maripaludis and identification of a Pst I-like restriction system. FEMS Microbiol Lett 121:309–314CrossRef
25.
Zurück zum Zitat Jones GM, Wu J, Ding Y, Uchida K, Aizawa S, Robotham A, Logan SM, Kelly J, Jarrell KF (2012) Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus maripaludis. J Bacteriol 194:2693–2702CrossRef Jones GM, Wu J, Ding Y, Uchida K, Aizawa S, Robotham A, Logan SM, Kelly J, Jarrell KF (2012) Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus maripaludis. J Bacteriol 194:2693–2702CrossRef
26.
Zurück zum Zitat Walters AD, Smith SE, Chong JP (2011) Shuttle vector system for Methanococcus maripaludis with improved transformation efficiency. Appl Environ Microbiol 77:2549–2551CrossRef Walters AD, Smith SE, Chong JP (2011) Shuttle vector system for Methanococcus maripaludis with improved transformation efficiency. Appl Environ Microbiol 77:2549–2551CrossRef
27.
Zurück zum Zitat Ladapo J, Whitman WB (1990) Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc Natl Acad Sci 87:5598–5602CrossRef Ladapo J, Whitman WB (1990) Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc Natl Acad Sci 87:5598–5602CrossRef
28.
Zurück zum Zitat Blank CE, Kessler PS, Leigh JA (1995) Genetics in methanogens: transposon insertion mutagenesis of a Methanococcus maripaludis nifH gene. J Bacteriol 177:5773–5777 Blank CE, Kessler PS, Leigh JA (1995) Genetics in methanogens: transposon insertion mutagenesis of a Methanococcus maripaludis nifH gene. J Bacteriol 177:5773–5777
29.
Zurück zum Zitat Reed JL, Palsson BO (2003) Thirteen years of building constraint-based In Silico models of Escherichia coli. J Bacteriol 185:2692–2699CrossRef Reed JL, Palsson BO (2003) Thirteen years of building constraint-based In Silico models of Escherichia coli. J Bacteriol 185:2692–2699CrossRef
30.
Zurück zum Zitat Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897CrossRef Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897CrossRef
31.
Zurück zum Zitat Fleischmann R, Adams M, White O, Clayton R, Tatusov R, Mushegian A, Bork P, Brown N, Hayes W, White O (1995) Whole-genome random sequencing and assembly of Haemophilus. Science 269:496–512CrossRef Fleischmann R, Adams M, White O, Clayton R, Tatusov R, Mushegian A, Bork P, Brown N, Hayes W, White O (1995) Whole-genome random sequencing and assembly of Haemophilus. Science 269:496–512CrossRef
32.
Zurück zum Zitat Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56:398–421CrossRef Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56:398–421CrossRef
33.
Zurück zum Zitat Aggarwal S, Karimi IA, Lee DY (2011) Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies. Mol BioSyst 7:3122–3131CrossRef Aggarwal S, Karimi IA, Lee DY (2011) Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies. Mol BioSyst 7:3122–3131CrossRef
34.
Zurück zum Zitat Widiastuti H, Kim JY, Selvarasu S, Karimi IA, Kim H, Seo JS, Lee DY (2011) Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnol Bioeng 108:655–665CrossRef Widiastuti H, Kim JY, Selvarasu S, Karimi IA, Kim H, Seo JS, Lee DY (2011) Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnol Bioeng 108:655–665CrossRef
35.
Zurück zum Zitat Satish Kumar V, Ferry JG, Maranas CD (2011) Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans. BMC Syst Biol 5:28 Satish Kumar V, Ferry JG, Maranas CD (2011) Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans. BMC Syst Biol 5:28
36.
Zurück zum Zitat Selvarasu S, Karimi IA, Ghim G-H, Lee D-Y (2010) Genome-scale modeling and in silico analysis of mouse cell metabolic network. Mol BioSyst 6:152–161CrossRef Selvarasu S, Karimi IA, Ghim G-H, Lee D-Y (2010) Genome-scale modeling and in silico analysis of mouse cell metabolic network. Mol BioSyst 6:152–161CrossRef
37.
Zurück zum Zitat Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D (2012) Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS ONE 7:e43401CrossRef Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D (2012) Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS ONE 7:e43401CrossRef
38.
Zurück zum Zitat Goyal N, Widiastuti H, Karimi IA, Zhou Z (2014) Genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. Mol BioSyst 10:1043–1054CrossRef Goyal N, Widiastuti H, Karimi IA, Zhou Z (2014) Genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. Mol BioSyst 10:1043–1054CrossRef
Metadaten
Titel
Introduction
verfasst von
Nishu Goyal
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2510-5_1