Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Mariela A. Agotegaray, Verónica L. Lassalle

Erschienen in: Silica-coated Magnetic Nanoparticles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanotechnology is a scientific discipline involving multiple hard sciences such as chemistry, physic, biology, engineering, among others. The occurrence of novel properties when materials are reduced to nanosizes is the main reason for the scientific and technological interest in such discipline. In particular nanomedicine, that is nanotechnology applied to medicine, has suffered an exponential grow in the last decades. The possibility to target the drug to the diseased site, by avoiding side effects and lowering the required doses, strongly impulses the development of this kind of technology. Magnetic nanotechnology presents the additional advantage related to nanosystems that may be easily guided by the aid of an external magnetic field. This property improves the targeting capability and increases their potential in biomedical applications such as target drug delivery or MRI diagnostic. Iron oxides based nanosystems are currently the favorites to achieve these kinds of issues due to multiple reasons, but mainly to their low toxicity and biocompatibility. However, surface modification is often required to gain in stability, improve their physicochemical properties or even to raise the reactivity by means of functional groups incorporation. Silica appears as a highly attractive material to assess this objective.
In the Introductory section the general aspects of nanotechnology and nanomedicine are highlighted. Principles of iron oxides nanoparticles and their silica coat are described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Feynman, R. P. (1960). There’s plenty of room at the bottom. Engineering and Science, 23(5), 22–36. Feynman, R. P. (1960). There’s plenty of room at the bottom. Engineering and Science, 23(5), 22–36.
2.
Zurück zum Zitat Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641.CrossRef Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641.CrossRef
3.
Zurück zum Zitat Zare-Zardini, H., Ferdowsian, F., Soltaninejad, H., Ghorani Azam, A., Soleymani, S., Zare-Shehneh, M., et al. (2016). Application of nanotechnology in biomedicine: A major focus on cancer therapy. Journal of Nano Research, 35, 55–66.CrossRef Zare-Zardini, H., Ferdowsian, F., Soltaninejad, H., Ghorani Azam, A., Soleymani, S., Zare-Shehneh, M., et al. (2016). Application of nanotechnology in biomedicine: A major focus on cancer therapy. Journal of Nano Research, 35, 55–66.CrossRef
4.
Zurück zum Zitat Fahr, A., van Hoogevest, P., May, S., Bergstrand, N., & Leigh, M. L. (2005). Transfer of lipophilic drugs between liposomal membranes and biological interfaces: Consequences for drug delivery. European Journal of Pharmaceutical Sciences, 26(3–4), 251–265.CrossRef Fahr, A., van Hoogevest, P., May, S., Bergstrand, N., & Leigh, M. L. (2005). Transfer of lipophilic drugs between liposomal membranes and biological interfaces: Consequences for drug delivery. European Journal of Pharmaceutical Sciences, 26(3–4), 251–265.CrossRef
5.
Zurück zum Zitat Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2012). Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discovery Today, 17(1–2), 71–80.CrossRef Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2012). Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discovery Today, 17(1–2), 71–80.CrossRef
6.
Zurück zum Zitat Bonifácio, B. V., da Silva, P. B., dos Santos Ramos, M. A., Negri, K. M. S., Bauab, T. M., & Chorilli, M. (2014). Nanotechnology-based drug delivery systems and herbal medicines: A review. International Journal of Nanomedicine, 9, 1–15.CrossRef Bonifácio, B. V., da Silva, P. B., dos Santos Ramos, M. A., Negri, K. M. S., Bauab, T. M., & Chorilli, M. (2014). Nanotechnology-based drug delivery systems and herbal medicines: A review. International Journal of Nanomedicine, 9, 1–15.CrossRef
7.
Zurück zum Zitat Üner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2(3), 289–300. Üner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2(3), 289–300.
8.
Zurück zum Zitat Müller-Goymann, C. C. (2004). Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 343–356.CrossRef Müller-Goymann, C. C. (2004). Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 343–356.CrossRef
9.
Zurück zum Zitat Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., et al. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 247.CrossRef Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., et al. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 247.CrossRef
10.
Zurück zum Zitat Karimi, M., Solati, N., Amiri, M., Mirshekari, H., Mohamed, E., Taheri, M., et al. (2015). Carbon nanotubes part I: Preparation of a novel and versatile drug-delivery vehicle. Expert Opinion on Drug Delivery, 12(7), 1071–1087.CrossRef Karimi, M., Solati, N., Amiri, M., Mirshekari, H., Mohamed, E., Taheri, M., et al. (2015). Carbon nanotubes part I: Preparation of a novel and versatile drug-delivery vehicle. Expert Opinion on Drug Delivery, 12(7), 1071–1087.CrossRef
11.
Zurück zum Zitat Al Faraj, A., Shaik, A. P., & Shaik, A. S. (2015). Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: Noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. International Journal of Nanomedicine, 10, 157. Al Faraj, A., Shaik, A. P., & Shaik, A. S. (2015). Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: Noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. International Journal of Nanomedicine, 10, 157.
12.
Zurück zum Zitat Gulati, K., Kogawa, M., Maher, S., Atkins, G., Findlay, D., & Losic, D. (2015). Titania nanotubes for local drug delivery from implant surfaces. In D. Losic & A. Santos (Eds.), Engineered nanoporous materials (pp. 307–355). New York: Springer International Publishing. Gulati, K., Kogawa, M., Maher, S., Atkins, G., Findlay, D., & Losic, D. (2015). Titania nanotubes for local drug delivery from implant surfaces. In D. Losic & A. Santos (Eds.), Engineered nanoporous materials (pp. 307–355). New York: Springer International Publishing.
13.
Zurück zum Zitat Mehra, N. K., & Jain, N. K. (2016). Multifunctional hybrid-carbon nanotubes: New horizon in drug delivery and targeting. Journal of Drug Targeting, 24(4), 294–308.CrossRef Mehra, N. K., & Jain, N. K. (2016). Multifunctional hybrid-carbon nanotubes: New horizon in drug delivery and targeting. Journal of Drug Targeting, 24(4), 294–308.CrossRef
14.
Zurück zum Zitat Modani, S., Kharwade, M., & Nijhawan, M. (2013). Quantum dots: A Novelty of medical fields with multiple applications. International Journal of Current Pharmaceutical Research, 5(4), 55–59. Modani, S., Kharwade, M., & Nijhawan, M. (2013). Quantum dots: A Novelty of medical fields with multiple applications. International Journal of Current Pharmaceutical Research, 5(4), 55–59.
15.
Zurück zum Zitat Qi, L., & Gao, X. (2008). Emerging application of quantum dots for drug delivery and therapy. Expert Opinion on Drug Delivery, 5(3), 263–267.CrossRef Qi, L., & Gao, X. (2008). Emerging application of quantum dots for drug delivery and therapy. Expert Opinion on Drug Delivery, 5(3), 263–267.CrossRef
16.
Zurück zum Zitat Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., Cho, Ch. S. (2008). Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26, 1–21. Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., Cho, Ch. S. (2008). Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26, 1–21.
17.
Zurück zum Zitat Varna, M., Ratajczak, P., Ferreira, I., et al. (2012). In vivo distribution of inorganic nanoparticles in preclinical models. Journal of Biomaterials and Nanobiotechnology, 03, 269.CrossRef Varna, M., Ratajczak, P., Ferreira, I., et al. (2012). In vivo distribution of inorganic nanoparticles in preclinical models. Journal of Biomaterials and Nanobiotechnology, 03, 269.CrossRef
18.
Zurück zum Zitat Li, M., Al-Jamal, K. T., Kostarelos, K., et al. (2010). Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano, 4, 6303–6317.CrossRef Li, M., Al-Jamal, K. T., Kostarelos, K., et al. (2010). Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano, 4, 6303–6317.CrossRef
19.
Zurück zum Zitat Chono, S., Tanino, T., Seki, T., & Morimoto, K. (2007). Uptake characteristics of liposomes by rat alveolar macrophages: Influence of particle size and surface mannose modification. Journal of Pharmacy and Pharmacology, 59(1), 75–80.CrossRef Chono, S., Tanino, T., Seki, T., & Morimoto, K. (2007). Uptake characteristics of liposomes by rat alveolar macrophages: Influence of particle size and surface mannose modification. Journal of Pharmacy and Pharmacology, 59(1), 75–80.CrossRef
20.
Zurück zum Zitat Osaki, F., Kanamori, T., Sando, S., Sera, T., & Aoyama, T. (2004). A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. Journal of the American Chemical Society, 126(21), 6520–6521.CrossRef Osaki, F., Kanamori, T., Sando, S., Sera, T., & Aoyama, T. (2004). A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. Journal of the American Chemical Society, 126(21), 6520–6521.CrossRef
21.
Zurück zum Zitat Wina, K. Y., & Feng, S. S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713–2722.CrossRef Wina, K. Y., & Feng, S. S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713–2722.CrossRef
22.
Zurück zum Zitat Foged, C., Brodin, B., Frokjaer, S., & Sundblad, A. (2005). Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. International Journal of Pharmaceutics, 298(2), 315–322.CrossRef Foged, C., Brodin, B., Frokjaer, S., & Sundblad, A. (2005). Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. International Journal of Pharmaceutics, 298(2), 315–322.CrossRef
23.
Zurück zum Zitat Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668.CrossRef Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668.CrossRef
24.
Zurück zum Zitat Lu, F., Wu, S. H., Hung, Y., & Mou, C. Y. (2009). Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small, 5(12), 1408–1413.CrossRef Lu, F., Wu, S. H., Hung, Y., & Mou, C. Y. (2009). Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small, 5(12), 1408–1413.CrossRef
Metadaten
Titel
Introduction
verfasst von
Mariela A. Agotegaray
Verónica L. Lassalle
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50158-1_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.