Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the step growth of Internet of Things (IoT), energy-constrained wireless devices are deployed throughout our lives. Wireless powered communication network (WPCN) is a promising networking paradigm where wireless devices can be remotely powered by radio frequency (RF) enabled wireless power transfer (WPT) technology. In this chapter, we first given an overview of WPCN, which includes the research background and the recent research results. Then, we briefly discuss the main operation modes of WPCN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Bi, C. K. Ho, and R. Zhang, “Wireless powered communication: opportunities and challenges,” IEEE Communications Magazine, vol. 53, no. 4, pp. 117–125, Apr. 2015.CrossRef S. Bi, C. K. Ho, and R. Zhang, “Wireless powered communication: opportunities and challenges,” IEEE Communications Magazine, vol. 53, no. 4, pp. 117–125, Apr. 2015.CrossRef
2.
Zurück zum Zitat S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication networks: an overview,” IEEE Wireless Communications, vol. 23 no. 2, pp. 10–18, Apr. 2016.CrossRef S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication networks: an overview,” IEEE Wireless Communications, vol. 23 no. 2, pp. 10–18, Apr. 2016.CrossRef
3.
Zurück zum Zitat C. K. Ho and R. Zhang, “Optimal energy allocation for wireless communications with energy harvesting constraints,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4808–4818, Sept. 2012.MathSciNetCrossRef C. K. Ho and R. Zhang, “Optimal energy allocation for wireless communications with energy harvesting constraints,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4808–4818, Sept. 2012.MathSciNetCrossRef
4.
Zurück zum Zitat C. Huang, R. Zhang, and S. Cui, “Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 1074–1087, Feb. 2014.CrossRef C. Huang, R. Zhang, and S. Cui, “Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 1074–1087, Feb. 2014.CrossRef
5.
Zurück zum Zitat V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design considerations for solar energy harvesting wireless embedded systems,” in Proc. IPSN, pp. 457–462, LA, California, USA, 2005. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design considerations for solar energy harvesting wireless embedded systems,” in Proc. IPSN, pp. 457–462, LA, California, USA, 2005.
6.
Zurück zum Zitat Y. K. Tan and S. K. Panda, “Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 38–50, Jan. 2011.CrossRef Y. K. Tan and S. K. Panda, “Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 38–50, Jan. 2011.CrossRef
7.
Zurück zum Zitat X. Lu and S-H. Yan, “Thermal Energy Harvesting for WSNs,” in Proc. IEEE SMC, pp. 3045–3052, Istanbul, Turkey, Oct. 2010. X. Lu and S-H. Yan, “Thermal Energy Harvesting for WSNs,” in Proc. IEEE SMC, pp. 3045–3052, Istanbul, Turkey, Oct. 2010.
8.
Zurück zum Zitat K. Huang, C. Zhong, and G. Zhu, “Some new research trends in wirelessly powered communications,” IEEE Wireless Communications, vol. 23, no. 2, pp. 19–27, Apr. 2016.CrossRef K. Huang, C. Zhong, and G. Zhu, “Some new research trends in wirelessly powered communications,” IEEE Wireless Communications, vol. 23, no. 2, pp. 19–27, Apr. 2016.CrossRef
9.
Zurück zum Zitat P. Ramezani and A. Jamalipour, “Toward the evolution of wireless powered communication networks for the future Internet of Things,” IEEE Network, vol. 31, no. 6, pp. 62–69, Nov. /Dec. 2017.CrossRef P. Ramezani and A. Jamalipour, “Toward the evolution of wireless powered communication networks for the future Internet of Things,” IEEE Network, vol. 31, no. 6, pp. 62–69, Nov. /Dec. 2017.CrossRef
10.
Zurück zum Zitat Y. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 7, pp. 1784–1789, Jul. 2002.CrossRef Y. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 7, pp. 1784–1789, Jul. 2002.CrossRef
11.
Zurück zum Zitat K. Huang and X. Zhou, “Cutting the last wires for mobile communications by microwave power transfer,” IEEE Communications Magazine, vol. 53, no. 6, pp. 86–93, June 2015.MathSciNetCrossRef K. Huang and X. Zhou, “Cutting the last wires for mobile communications by microwave power transfer,” IEEE Communications Magazine, vol. 53, no. 6, pp. 86–93, June 2015.MathSciNetCrossRef
12.
Zurück zum Zitat R. Zhang and C. K. Ho, “ MIMO broadcasting for simultaneous wireless information and power transfer.,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, May 2013.CrossRef R. Zhang and C. K. Ho, “ MIMO broadcasting for simultaneous wireless information and power transfer.,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, May 2013.CrossRef
13.
Zurück zum Zitat L. Liu, R. Zhang, and K. C. Chua, “Wireless information and power transfer: A dynamic power splitting approach,” IEEE Transactions on Communications, vol. 61, no. 9, pp. 3990–4001, Sept. 2013.CrossRef L. Liu, R. Zhang, and K. C. Chua, “Wireless information and power transfer: A dynamic power splitting approach,” IEEE Transactions on Communications, vol. 61, no. 9, pp. 3990–4001, Sept. 2013.CrossRef
14.
Zurück zum Zitat H. Xing, L. Liu, and R. Zhang, “Secrecy wireless information and power transfer in fading wiretap channel,” IEEE Transactions on Vehicular Technology, vol. 65, no. 1, pp. 180–190, Jan. 2016.CrossRef H. Xing, L. Liu, and R. Zhang, “Secrecy wireless information and power transfer in fading wiretap channel,” IEEE Transactions on Vehicular Technology, vol. 65, no. 1, pp. 180–190, Jan. 2016.CrossRef
15.
Zurück zum Zitat H. Ju and R. Zhang, “Throughput maximization in wireless powered communication networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 418–428, Jan. 2014.CrossRef H. Ju and R. Zhang, “Throughput maximization in wireless powered communication networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 418–428, Jan. 2014.CrossRef
16.
Zurück zum Zitat H. Ju and R. Zhang, “Optimal resource allocation in full-duplex wireless-powered communication network,” IEEE Transactions on Communications, vol. 62, no. 10, pp. 3528–3540, Oct. 2014.CrossRef H. Ju and R. Zhang, “Optimal resource allocation in full-duplex wireless-powered communication network,” IEEE Transactions on Communications, vol. 62, no. 10, pp. 3528–3540, Oct. 2014.CrossRef
17.
Zurück zum Zitat X. Kang, C. K. Ho, and S. Sun, “Full-duplex wireless-powered communication network with energy causality,” IEEE Transactions on Wireless Communications, vol. 14, no. 10, pp. 5539–5551, Oct. 2015.CrossRef X. Kang, C. K. Ho, and S. Sun, “Full-duplex wireless-powered communication network with energy causality,” IEEE Transactions on Wireless Communications, vol. 14, no. 10, pp. 5539–5551, Oct. 2015.CrossRef
18.
Zurück zum Zitat H. Lee, K. J. Lee, H. Kim, B. Clerckx, and I. Lee, “Resource allocation techniques for wireless powered communication networks with energy storage constraint,” IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 2619–2628, Apr. 2016.CrossRef H. Lee, K. J. Lee, H. Kim, B. Clerckx, and I. Lee, “Resource allocation techniques for wireless powered communication networks with energy storage constraint,” IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 2619–2628, Apr. 2016.CrossRef
19.
Zurück zum Zitat Q. Wu, W. Chen, and J. Li, “Wireless powered communications with initial energy: Qos guaranteed energy-efficient resource allocation,” IEEE Communications Letters, vol. 19, no. 12, pp. 2278–2281, Dec. 2015.CrossRef Q. Wu, W. Chen, and J. Li, “Wireless powered communications with initial energy: Qos guaranteed energy-efficient resource allocation,” IEEE Communications Letters, vol. 19, no. 12, pp. 2278–2281, Dec. 2015.CrossRef
20.
Zurück zum Zitat P. Ramezani, “Extending Wireless Powered Communication Networks for Future Internet of Things,” Australia: Faculty of Engineering and Information Technologies, University of Sydney. P. Ramezani, “Extending Wireless Powered Communication Networks for Future Internet of Things,” Australia: Faculty of Engineering and Information Technologies, University of Sydney.
21.
Zurück zum Zitat V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith, “Ambient backscatter: Wireless communication out of thin air,” in Proc. ACM SIGCOMM, pp. 39–50, Hong Kong, Aug. 2013.CrossRef V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith, “Ambient backscatter: Wireless communication out of thin air,” in Proc. ACM SIGCOMM, pp. 39–50, Hong Kong, Aug. 2013.CrossRef
22.
Zurück zum Zitat B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall, “WiFi backscatter: Internet connectivity for RF-powered devices,” in Proc. ACM SIGCOMM, pp. 607–608, New York, NY, USA, 2014. B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall, “WiFi backscatter: Internet connectivity for RF-powered devices,” in Proc. ACM SIGCOMM, pp. 607–608, New York, NY, USA, 2014.
23.
Zurück zum Zitat C. Boyer and S. Roy, “Backscatter communication and RFID: Coding, energy, and MIMO analysis,” IEEE Transactions on Communications, vol. 62, no. 3, pp. 770–785, Mar. 2014.CrossRef C. Boyer and S. Roy, “Backscatter communication and RFID: Coding, energy, and MIMO analysis,” IEEE Transactions on Communications, vol. 62, no. 3, pp. 770–785, Mar. 2014.CrossRef
24.
Zurück zum Zitat J. Kimionis, A. Bletsas, and J. N. Sahalos, “Increased range bistatic scatter radio,” IEEE Transactions on Communications, vol. 62, no. 3, pp. 1091–1104, Mar. 2014.CrossRef J. Kimionis, A. Bletsas, and J. N. Sahalos, “Increased range bistatic scatter radio,” IEEE Transactions on Communications, vol. 62, no. 3, pp. 1091–1104, Mar. 2014.CrossRef
25.
Zurück zum Zitat J. I. Choi, M. Jain, K. Srivivasan, P. Levis, and S. Katti, “Achieving single channel, full duplex wireless communication,” in Proc. ACM MobiCom, pp. 1–12, Illinois, USA, Sept. 2010. J. I. Choi, M. Jain, K. Srivivasan, P. Levis, and S. Katti, “Achieving single channel, full duplex wireless communication,” in Proc. ACM MobiCom, pp. 1–12, Illinois, USA, Sept. 2010.
26.
Zurück zum Zitat D. Bharadia, E. McMilin, and S. Katti. Full duplex radios, in ACM SIGCOMM, pp. 375–386, Hong Kong, China, Aug. 2013.CrossRef D. Bharadia, E. McMilin, and S. Katti. Full duplex radios, in ACM SIGCOMM, pp. 375–386, Hong Kong, China, Aug. 2013.CrossRef
27.
Zurück zum Zitat B. P. Day, A. R. Margetts, D. W. Bliss, and P. Schniter, “Full-duplex bidirectional MIMO: Achievable rates under limited dynamic range,” IEEE Transactions on Signal Processing, vol. 60, no. 7, pp. 3702–3713, Jul. 2012.MathSciNetCrossRef B. P. Day, A. R. Margetts, D. W. Bliss, and P. Schniter, “Full-duplex bidirectional MIMO: Achievable rates under limited dynamic range,” IEEE Transactions on Signal Processing, vol. 60, no. 7, pp. 3702–3713, Jul. 2012.MathSciNetCrossRef
28.
Zurück zum Zitat T. M. Kim, H. J. Yang, and A. J. Paulraj, “Distributed sum-rate optimization for full-duplex MIMO system under limited dynamic range,” IEEE Signal Processing Letter, vol. 20, no. 6, pp. 555–558, Jun. 2013.CrossRef T. M. Kim, H. J. Yang, and A. J. Paulraj, “Distributed sum-rate optimization for full-duplex MIMO system under limited dynamic range,” IEEE Signal Processing Letter, vol. 20, no. 6, pp. 555–558, Jun. 2013.CrossRef
29.
Zurück zum Zitat L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang, “Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends,” IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, Sept. 2015. L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang, “Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends,” IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, Sept. 2015.
30.
Zurück zum Zitat P. D. Diamantoulakis, K. N. Pappi, Z. Ding and G. K. Karagiannidis, “Wireless-powered communications with non-orthogonal multiple access,” IEEE Transactions on Wireless Communications, vol. 15, no. 12, pp. 8422–8436, Dec. 2016.CrossRef P. D. Diamantoulakis, K. N. Pappi, Z. Ding and G. K. Karagiannidis, “Wireless-powered communications with non-orthogonal multiple access,” IEEE Transactions on Wireless Communications, vol. 15, no. 12, pp. 8422–8436, Dec. 2016.CrossRef
31.
Zurück zum Zitat P. D. and G. K. Karagiannidis, “Maximizing proportional fairness in wireless powered communications,” IEEE Wireless Communications Letters, vol. 6, no. 2, pp. 202–205, Apr. 2017. P. D. and G. K. Karagiannidis, “Maximizing proportional fairness in wireless powered communications,” IEEE Wireless Communications Letters, vol. 6, no. 2, pp. 202–205, Apr. 2017.
32.
Zurück zum Zitat Y. Yuan and Z. Ding, “The application of non-orthogonal multiple access in wireless powered communication networks,” in Proc. IEEE SPAWC, pp. 1–5, Edinburgh, UK, 2016. Y. Yuan and Z. Ding, “The application of non-orthogonal multiple access in wireless powered communication networks,” in Proc. IEEE SPAWC, pp. 1–5, Edinburgh, UK, 2016.
33.
Zurück zum Zitat M. A. Abd-Elmagid, A. Biason, T. ElBatt, K. G. Seddik, and M. Zorzi, “Non-orthogonal multiple access schemes in wireless powered communication networks,” in Proc. ICC, pp. 1–6, Paris, France, 2017. M. A. Abd-Elmagid, A. Biason, T. ElBatt, K. G. Seddik, and M. Zorzi, “Non-orthogonal multiple access schemes in wireless powered communication networks,” in Proc. ICC, pp. 1–6, Paris, France, 2017.
34.
Zurück zum Zitat S. Lee and R. Zhang, “Cognitive wireless powered network: Spectrum sharing models and throughput maximization,” IEEE Transactions on Cognitive Communications and Networking, vol. 1, no. 3, pp. 335–346, Sept. 2015.CrossRef S. Lee and R. Zhang, “Cognitive wireless powered network: Spectrum sharing models and throughput maximization,” IEEE Transactions on Cognitive Communications and Networking, vol. 1, no. 3, pp. 335–346, Sept. 2015.CrossRef
35.
Zurück zum Zitat Y. Cheng, P. Fu, Y. Ding, B. Li, and X. Yuan, “Proportional fairness in cognitive wireless powered communication networks,” IEEE Communications Letters, vol. 21, no. 6, pp. 1397–1400, June 2017.CrossRef Y. Cheng, P. Fu, Y. Ding, B. Li, and X. Yuan, “Proportional fairness in cognitive wireless powered communication networks,” IEEE Communications Letters, vol. 21, no. 6, pp. 1397–1400, June 2017.CrossRef
36.
Zurück zum Zitat J. Kim, H. Lee, C. Song, T. Oh, and I. Lee, “Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 913–923, Feb. 2017.CrossRef J. Kim, H. Lee, C. Song, T. Oh, and I. Lee, “Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 913–923, Feb. 2017.CrossRef
37.
Zurück zum Zitat G. Wang, F. Gao, R. Fan, and C. Tellambura, “ Ambient backscatter communication systems: Detection and performance analysis,” IEEE Transactions on Communications, vol. 64, no. 11, pp. 4836–4846, Nov. 2016.CrossRef G. Wang, F. Gao, R. Fan, and C. Tellambura, “ Ambient backscatter communication systems: Detection and performance analysis,” IEEE Transactions on Communications, vol. 64, no. 11, pp. 4836–4846, Nov. 2016.CrossRef
38.
Zurück zum Zitat D. T. Hoang, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “ The tradeoff analysis in RF-powered backscatter cognitive radio networks,” in Proc. IEEE GLOBECOM, pp. 1–6, Washington, DC, USA, Dec. 2016. D. T. Hoang, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “ The tradeoff analysis in RF-powered backscatter cognitive radio networks,” in Proc. IEEE GLOBECOM, pp. 1–6, Washington, DC, USA, Dec. 2016.
39.
Zurück zum Zitat D. T. Hoang, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Ambient backscatter: A new approach toimprove network performance for RF-powered cognitive radio networks,” IEEE Transactions on Communications, vol. 65, no. 9, pp. 3659–3674, Sept. 2017.CrossRef D. T. Hoang, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Ambient backscatter: A new approach toimprove network performance for RF-powered cognitive radio networks,” IEEE Transactions on Communications, vol. 65, no. 9, pp. 3659–3674, Sept. 2017.CrossRef
40.
Zurück zum Zitat D. T. Hoang, D. Niyato, P. Wang, and D. I. Kim, “Optimal time sharing in RF-powered backscatter cognitive radio networks,” in Proc. IEEE ICC, pp. 1–6, Paris, France, May 2017. D. T. Hoang, D. Niyato, P. Wang, and D. I. Kim, “Optimal time sharing in RF-powered backscatter cognitive radio networks,” in Proc. IEEE ICC, pp. 1–6, Paris, France, May 2017.
41.
Zurück zum Zitat S. H. Kim and D. I. Kim, “Hybrid backscatter communication for wireless-powered heterogeneous networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6557–6570, Oct. 2017.CrossRef S. H. Kim and D. I. Kim, “Hybrid backscatter communication for wireless-powered heterogeneous networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6557–6570, Oct. 2017.CrossRef
43.
Zurück zum Zitat N. V. Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim, “Ambient backscatter communication: A contemporary survey,” arXiv preprint: 1712.04804, 2017. N. V. Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim, “Ambient backscatter communication: A contemporary survey,” arXiv preprint: 1712.04804, 2017.
Metadaten
Titel
Introduction
verfasst von
Guan Gui
Bin Lyu
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-01021-8_1

Neuer Inhalt