Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Luis Blay Esteban

Erschienen in: Dynamics of Non-Spherical Particles in Turbulence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The industrial aim associated to this project is to improve the efficiency of a novel device that separates glass and plastic particles from a co-mingled waste product coming from Material Recovery Facilities (MRF). This waste product is mainly composed of glass, plastic, paper-based materials and metals. However, most of the metals are removed from the raw product before this enters the separator, whereas paper and other cellulose-based materials are suspended in water. Thus, the main task of this device is to separate plastics that are lighter and heavier than water from glass; and the later water treatment that permits to filter the pulp suspended in it.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Moffet RC, Prather KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS 106:11872–77CrossRef Moffet RC, Prather KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS 106:11872–77CrossRef
2.
Zurück zum Zitat Sabban L, van Hout R (2011) Measurements of pollen grain dispersal in still air and stationary near homogeneous, isotropic turbulence. J Aerosol Sci 42:867–882CrossRef Sabban L, van Hout R (2011) Measurements of pollen grain dispersal in still air and stationary near homogeneous, isotropic turbulence. J Aerosol Sci 42:867–882CrossRef
3.
Zurück zum Zitat Janhall S (2015) Review on urban vegetation and particle air pollution - deposition and dispersion. Atmos Environ 105:130–137CrossRef Janhall S (2015) Review on urban vegetation and particle air pollution - deposition and dispersion. Atmos Environ 105:130–137CrossRef
4.
Zurück zum Zitat Monchaux R, Bourgoin M, Cartellier A (2012) Analyzing preferential concentration and clustering of inertial particles in turbulence. Int J Multiph Flow 40CrossRef Monchaux R, Bourgoin M, Cartellier A (2012) Analyzing preferential concentration and clustering of inertial particles in turbulence. Int J Multiph Flow 40CrossRef
5.
Zurück zum Zitat Ashbaugh HS, Guo X, Schwahn D, Prudhomme RK, Richter D, Fetters LJ (2005) Interaction of paraffin wax gels with ethylene/vinyl acetate co-polymers. Energy Fuels 19:138–144CrossRef Ashbaugh HS, Guo X, Schwahn D, Prudhomme RK, Richter D, Fetters LJ (2005) Interaction of paraffin wax gels with ethylene/vinyl acetate co-polymers. Energy Fuels 19:138–144CrossRef
6.
Zurück zum Zitat Binks BP, Tyowua AT (2016) Oil-in-oil emulsions stabilised solely by solid particles. Soft Matter 12(3):876–888CrossRef Binks BP, Tyowua AT (2016) Oil-in-oil emulsions stabilised solely by solid particles. Soft Matter 12(3):876–888CrossRef
7.
Zurück zum Zitat Sullivan AP, Kilpatrick PK (2002) The effects of inorganic solid particles on water and crude oil emulsion stability. Ind Eng Chem Res 41:3389–3404CrossRef Sullivan AP, Kilpatrick PK (2002) The effects of inorganic solid particles on water and crude oil emulsion stability. Ind Eng Chem Res 41:3389–3404CrossRef
8.
Zurück zum Zitat Sinquin A, Palermo T, Peysson Y (2004) Rheological and flow properties of gas hydrate suspensions. Oil Gas Sci Technol 59(1):41–57CrossRef Sinquin A, Palermo T, Peysson Y (2004) Rheological and flow properties of gas hydrate suspensions. Oil Gas Sci Technol 59(1):41–57CrossRef
9.
Zurück zum Zitat Muller RH, Radtke M, Wissing SA (2002) Solid lidip nanoparticles (sln) and nanostructured lidip carriers (nlc) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:131–155CrossRef Muller RH, Radtke M, Wissing SA (2002) Solid lidip nanoparticles (sln) and nanostructured lidip carriers (nlc) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:131–155CrossRef
10.
Zurück zum Zitat Muller RH, Mader K, Gohla S (2000) Solid lidip nanoparticles (sln) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRef Muller RH, Mader K, Gohla S (2000) Solid lidip nanoparticles (sln) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRef
11.
Zurück zum Zitat Derksen JJ (2009) Scalar mixing with fixed and fluidized particles in micro-reactors. Chem Eng Res Des 87:550–556CrossRef Derksen JJ (2009) Scalar mixing with fixed and fluidized particles in micro-reactors. Chem Eng Res Des 87:550–556CrossRef
12.
Zurück zum Zitat Hoef MA, Annaland M, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann Rev Fluid Mech 40:47–70MathSciNetMATHCrossRef Hoef MA, Annaland M, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann Rev Fluid Mech 40:47–70MathSciNetMATHCrossRef
13.
Zurück zum Zitat Bu C, Liu D, Chen X, Pallares D, Gomez A (2014) Ignition behavior of single coal particle in fluidized bed under \(o_2\)\(co_2\) and \(o_2\)\(n_2\) atmospheres: a combination of visual image and particle temperature. Appl Energy 115:301–308CrossRef Bu C, Liu D, Chen X, Pallares D, Gomez A (2014) Ignition behavior of single coal particle in fluidized bed under \(o_2\)\(co_2\) and \(o_2\)\(n_2\) atmospheres: a combination of visual image and particle temperature. Appl Energy 115:301–308CrossRef
14.
Zurück zum Zitat Son SY, Kihm KD (1998) Effect of coal particle size on coal-water slurry (cws) atomization. At Sprays 8:503–519CrossRef Son SY, Kihm KD (1998) Effect of coal particle size on coal-water slurry (cws) atomization. At Sprays 8:503–519CrossRef
15.
Zurück zum Zitat Anping S, Fanghua L, Guosheng LHD, Xing Z (2016) Characteristics of particle size distributions for the collapsed riverbank along the desert reach of the upper yellow river. Int J Sediment Res Anping S, Fanghua L, Guosheng LHD, Xing Z (2016) Characteristics of particle size distributions for the collapsed riverbank along the desert reach of the upper yellow river. Int J Sediment Res
16.
Zurück zum Zitat Barhtyar R, Barry D, Li L, Jeng D, Yeganeh B (2009) Modeling sediment transport in the swash zone: a review. Ocean Eng 36:767–783CrossRef Barhtyar R, Barry D, Li L, Jeng D, Yeganeh B (2009) Modeling sediment transport in the swash zone: a review. Ocean Eng 36:767–783CrossRef
17.
Zurück zum Zitat Dail HJ, Merrifield MA, Bevis M (2000) Steep beach morphology changes due to energetic wave forcing. Mar Geol 162:443–458CrossRef Dail HJ, Merrifield MA, Bevis M (2000) Steep beach morphology changes due to energetic wave forcing. Mar Geol 162:443–458CrossRef
18.
Zurück zum Zitat Kolb CE, Worsnop DR (2012) Chemistry and compositions of atmospheric aerosol particles. Ann Rev Phys Chem 63:471–491CrossRef Kolb CE, Worsnop DR (2012) Chemistry and compositions of atmospheric aerosol particles. Ann Rev Phys Chem 63:471–491CrossRef
19.
Zurück zum Zitat Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Ann Rev Fluid Mech 42:113–133MATHCrossRef Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Ann Rev Fluid Mech 42:113–133MATHCrossRef
20.
Zurück zum Zitat Gore RA, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int J Multiph Flow 15(2):279–285CrossRef Gore RA, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int J Multiph Flow 15(2):279–285CrossRef
22.
Zurück zum Zitat Subramaniam S (2013) Lagrangian-eulerian methods for multiphase flows. Prog Energy Combust Sci 39:215–245CrossRef Subramaniam S (2013) Lagrangian-eulerian methods for multiphase flows. Prog Energy Combust Sci 39:215–245CrossRef
23.
Zurück zum Zitat Gouesbet G, Berlemont A (1999) Eulerian and lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog Energy Combust Sci 25:133–159CrossRef Gouesbet G, Berlemont A (1999) Eulerian and lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog Energy Combust Sci 25:133–159CrossRef
25.
Zurück zum Zitat Loth E (2008) Drag of non-spherical solid particles of regular and irregular shape. Powder Technol 182:342–353CrossRef Loth E (2008) Drag of non-spherical solid particles of regular and irregular shape. Powder Technol 182:342–353CrossRef
26.
Zurück zum Zitat Holzer A, Sommerfeld M (2008) New simple correlation formula for the drag coefficient on non-spherical particles. Powder Technol 184:361–365CrossRef Holzer A, Sommerfeld M (2008) New simple correlation formula for the drag coefficient on non-spherical particles. Powder Technol 184:361–365CrossRef
27.
Zurück zum Zitat Gabitto J, Tsouris C (2008) Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol 183:314–322CrossRef Gabitto J, Tsouris C (2008) Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol 183:314–322CrossRef
28.
Zurück zum Zitat Fornari W, Picano F, Brandt L (2016a) Sedimentation of finite-size spheres in quiescent and turbulent environments. J Fluid Mech 788:640–669MathSciNetMATHCrossRef Fornari W, Picano F, Brandt L (2016a) Sedimentation of finite-size spheres in quiescent and turbulent environments. J Fluid Mech 788:640–669MathSciNetMATHCrossRef
29.
Zurück zum Zitat Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E (2015) Shape-dependence of particle rotation in isotropic turbulence. Phys Fluids 27:035101CrossRef Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E (2015) Shape-dependence of particle rotation in isotropic turbulence. Phys Fluids 27:035101CrossRef
30.
Zurück zum Zitat Klein S, Gibert M, Berut A, Bodenschatz E (2013) Simultaneous 3d measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow. Meas Sci Technol 24CrossRef Klein S, Gibert M, Berut A, Bodenschatz E (2013) Simultaneous 3d measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow. Meas Sci Technol 24CrossRef
31.
Zurück zum Zitat Meyer CR, Byron ML, Variano EA (2013) Rotational diffusion of particles in turbulence. Limnol Ocean: Fluids Environ 3:89–102CrossRef Meyer CR, Byron ML, Variano EA (2013) Rotational diffusion of particles in turbulence. Limnol Ocean: Fluids Environ 3:89–102CrossRef
32.
Zurück zum Zitat Bellani G, Margaret LB, Collignon AG, Colin RM, Variano EA (2012) Shape effects on turbulent modulation by large nearly neutrally bouyant particles. J Fluid Mech 712:41–60MathSciNetMATHCrossRef Bellani G, Margaret LB, Collignon AG, Colin RM, Variano EA (2012) Shape effects on turbulent modulation by large nearly neutrally bouyant particles. J Fluid Mech 712:41–60MathSciNetMATHCrossRef
33.
Zurück zum Zitat Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011). Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow. Rev Sci Instrum 82CrossRef Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011). Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow. Rev Sci Instrum 82CrossRef
34.
Zurück zum Zitat Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011). Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys Rev Lett 106, 154501 Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011). Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys Rev Lett 106, 154501
35.
Zurück zum Zitat Taylor JR (2005) Classical mechanics. University Science Books, Mill ValleyMATH Taylor JR (2005) Classical mechanics. University Science Books, Mill ValleyMATH
36.
Zurück zum Zitat Basset AB (1888) A treatise on hydrodynamics. Deighton Bell, Cambridge, p 2 Basset AB (1888) A treatise on hydrodynamics. Deighton Bell, Cambridge, p 2
37.
Zurück zum Zitat Boussinesq J (1903) Theorie analitique de la chaleur. Gauthier-Villars, Paris, p 2 Boussinesq J (1903) Theorie analitique de la chaleur. Gauthier-Villars, Paris, p 2
38.
Zurück zum Zitat Oseen CW (1927) Hydrodynamik. Akademische Verlag, Leipzig, p 2MATH Oseen CW (1927) Hydrodynamik. Akademische Verlag, Leipzig, p 2MATH
39.
Zurück zum Zitat Tchen CM (1947). Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, TU Delft, Delft University of Technology Tchen CM (1947). Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, TU Delft, Delft University of Technology
40.
Zurück zum Zitat Maxey MR, Riley JJ (1983) Equation of motion for a small rifid sphere in a nonuniform flow. Phys Fluids 26(4):883–889MATHCrossRef Maxey MR, Riley JJ (1983) Equation of motion for a small rifid sphere in a nonuniform flow. Phys Fluids 26(4):883–889MATHCrossRef
41.
Zurück zum Zitat Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic, New York Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic, New York
42.
Zurück zum Zitat Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large reynolds. C. R. Acad Sci U. R. S. S. 30:301MathSciNet Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large reynolds. C. R. Acad Sci U. R. S. S. 30:301MathSciNet
43.
Zurück zum Zitat Elghobashi S, Truesdell GC (1992) Direct simulation of particle dispersion in a decaying isotropic turbulence. J Fluid Mech 242:655–700CrossRef Elghobashi S, Truesdell GC (1992) Direct simulation of particle dispersion in a decaying isotropic turbulence. J Fluid Mech 242:655–700CrossRef
44.
Zurück zum Zitat Ruetsch GR, Meiburg E (1993) On the motion of small spherical bubbles in two-dimensional vortical flows. Phys Fluids A 5:2326–2341MATHCrossRef Ruetsch GR, Meiburg E (1993) On the motion of small spherical bubbles in two-dimensional vortical flows. Phys Fluids A 5:2326–2341MATHCrossRef
45.
Zurück zum Zitat Lasheras JC, Tio KK (1994) Dynamics of a small spherical particle in steady two-dimensional vortex flows. Appl Mech Rev 6(47):61–69CrossRef Lasheras JC, Tio KK (1994) Dynamics of a small spherical particle in steady two-dimensional vortex flows. Appl Mech Rev 6(47):61–69CrossRef
46.
Zurück zum Zitat Tio KK, Ganan AM, Lasheras JC (1993) The dynamics of small, heavy, rigid, spherical particle in a periodic stuart vortex flow. Phys Fluids A 5:1679–1693MathSciNetMATHCrossRef Tio KK, Ganan AM, Lasheras JC (1993) The dynamics of small, heavy, rigid, spherical particle in a periodic stuart vortex flow. Phys Fluids A 5:1679–1693MathSciNetMATHCrossRef
47.
Zurück zum Zitat Wang LP, Maxey MR (1993) Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 256:27–68CrossRef Wang LP, Maxey MR (1993) Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 256:27–68CrossRef
48.
Zurück zum Zitat Truesdell GC, Elghobashi S (1994) On the two way interaction between homogeneous turbulence and dispersed solid particles. ii. Phys Fluids 6:1405–1407CrossRef Truesdell GC, Elghobashi S (1994) On the two way interaction between homogeneous turbulence and dispersed solid particles. ii. Phys Fluids 6:1405–1407CrossRef
49.
Zurück zum Zitat Yang CY, Lei U (1998) The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 371:179–205MATHCrossRef Yang CY, Lei U (1998) The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 371:179–205MATHCrossRef
50.
Zurück zum Zitat Aliseda A, Cartellier A, Hainaux F, Lasheras JC (2002) Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 468:77–105MATHCrossRef Aliseda A, Cartellier A, Hainaux F, Lasheras JC (2002) Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 468:77–105MATHCrossRef
51.
Zurück zum Zitat Wood AM, Hwang W, Eaton JK (2005) Preferential concentration of particles in homogeneous and isotropic turbulence. Int J Multiph Flow 31:1220–1230MATHCrossRef Wood AM, Hwang W, Eaton JK (2005) Preferential concentration of particles in homogeneous and isotropic turbulence. Int J Multiph Flow 31:1220–1230MATHCrossRef
52.
Zurück zum Zitat Maxey MR, Corrsin S (1986) Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J Atmos Sci 43:1112–1134CrossRef Maxey MR, Corrsin S (1986) Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J Atmos Sci 43:1112–1134CrossRef
53.
Zurück zum Zitat Yang TS, Shy SS (2003) The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys Fluids 15(4):868–880MATHCrossRef Yang TS, Shy SS (2003) The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys Fluids 15(4):868–880MATHCrossRef
54.
Zurück zum Zitat Obligado M, Teitelbaum T, Cartellier A, Mininni P, Bourgoin M (2014) Preferential concentration of heavy particles in turbulence. J Turbul 15:293–310CrossRef Obligado M, Teitelbaum T, Cartellier A, Mininni P, Bourgoin M (2014) Preferential concentration of heavy particles in turbulence. J Turbul 15:293–310CrossRef
55.
Zurück zum Zitat Xu H, Bodenschatz E (2008) Motion of inertial particles with size larger than kolmogorov scale in turbulent flows. Phys D Nonlinear Phenom Xu H, Bodenschatz E (2008) Motion of inertial particles with size larger than kolmogorov scale in turbulent flows. Phys D Nonlinear Phenom
56.
Zurück zum Zitat Voth GA, Porta A, Crawford AM, Alezander J, Bodenschatz E (2002) Measurement of particle accelerations in fully developed turbulence. J Fluid Mech 469:121–160MATHCrossRef Voth GA, Porta A, Crawford AM, Alezander J, Bodenschatz E (2002) Measurement of particle accelerations in fully developed turbulence. J Fluid Mech 469:121–160MATHCrossRef
57.
Zurück zum Zitat Ott S, Mann J (2000) An experimental investigation of the relative diffusion of particle paris in three-dimensional turbulent flow. J FLuid Mech 422:207–223MATHCrossRef Ott S, Mann J (2000) An experimental investigation of the relative diffusion of particle paris in three-dimensional turbulent flow. J FLuid Mech 422:207–223MATHCrossRef
58.
Zurück zum Zitat Schmitt FG, Seuront L (2008) Intermittent turbulence and copepod dynamics: increase in encounter rates through preferential concentration. J Mar Syst 70:263–272CrossRef Schmitt FG, Seuront L (2008) Intermittent turbulence and copepod dynamics: increase in encounter rates through preferential concentration. J Mar Syst 70:263–272CrossRef
59.
Zurück zum Zitat Qureshi NM, Bourgoin M, Baudet C, Cartellier A, Gagne Y (2007) Turbulent transport of material particles: an experimental study of finite size effect. Phys Rev Lett 99:184502 Qureshi NM, Bourgoin M, Baudet C, Cartellier A, Gagne Y (2007) Turbulent transport of material particles: an experimental study of finite size effect. Phys Rev Lett 99:184502
60.
Zurück zum Zitat Bagchi P, Balachandar S (2013) Effect of turbulence on the drag and lift of a particle. Phys Fluids 11(15):3496–3513MATH Bagchi P, Balachandar S (2013) Effect of turbulence on the drag and lift of a particle. Phys Fluids 11(15):3496–3513MATH
61.
Zurück zum Zitat Willmarth WW, Hawk NE, Harvey RL (1964) Steady and unsteady motions and wakes of freely falling disks. Phys Fluids 7:197–208MATHCrossRef Willmarth WW, Hawk NE, Harvey RL (1964) Steady and unsteady motions and wakes of freely falling disks. Phys Fluids 7:197–208MATHCrossRef
62.
Zurück zum Zitat Rhodes M (2008) Introduction to particle technology, 2nd edn. Wiley, New YorkCrossRef Rhodes M (2008) Introduction to particle technology, 2nd edn. Wiley, New YorkCrossRef
63.
Zurück zum Zitat Allen T (1990) Particle size measurements, vol 20, 4th edn. Chapman and hall, LondonCrossRef Allen T (1990) Particle size measurements, vol 20, 4th edn. Chapman and hall, LondonCrossRef
64.
65.
Zurück zum Zitat Christiansen EB, Barker DH (1965) The effect of shape and density on the free settling of particle at high reynolds number. AIChE J 50(11):145–151CrossRef Christiansen EB, Barker DH (1965) The effect of shape and density on the free settling of particle at high reynolds number. AIChE J 50(11):145–151CrossRef
66.
Zurück zum Zitat List R, Schemenauer RS (1971) Free-fall behaviour of planar snow crystals, conical graupel and small hail. J Atmos Sci 28:110–115CrossRef List R, Schemenauer RS (1971) Free-fall behaviour of planar snow crystals, conical graupel and small hail. J Atmos Sci 28:110–115CrossRef
67.
Zurück zum Zitat Leith D (1987) Drag on non-spherical objects. Aerosol Sci Tech 6:153–161CrossRef Leith D (1987) Drag on non-spherical objects. Aerosol Sci Tech 6:153–161CrossRef
68.
Zurück zum Zitat Chhabra RP, Agarwal L, Sinha NK (1999) Drag on non-spherical particles: an evaluation of available methods. Powder Technol 101:288–295CrossRef Chhabra RP, Agarwal L, Sinha NK (1999) Drag on non-spherical particles: an evaluation of available methods. Powder Technol 101:288–295CrossRef
69.
Zurück zum Zitat Haider AM, Levenspiel O (1989) Drag on non-spherical particles: an evaluation of available methods. Powder Technol 58:63–70CrossRef Haider AM, Levenspiel O (1989) Drag on non-spherical particles: an evaluation of available methods. Powder Technol 58:63–70CrossRef
70.
Zurück zum Zitat Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77:143–152CrossRef Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77:143–152CrossRef
71.
Zurück zum Zitat Chien SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281–289CrossRef Chien SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281–289CrossRef
72.
Zurück zum Zitat Hartman M, Trnka O, Svoboda K (1994) Free settling of nonspherical particles. Ind Eng Chem Res 33:1979–1983CrossRef Hartman M, Trnka O, Svoboda K (1994) Free settling of nonspherical particles. Ind Eng Chem Res 33:1979–1983CrossRef
73.
Zurück zum Zitat Swamee PK, Ohja CP (1991) Drag coefficient and fall velocity of nonspherical particles. J Hydr Eng 117:660–667CrossRef Swamee PK, Ohja CP (1991) Drag coefficient and fall velocity of nonspherical particles. J Hydr Eng 117:660–667CrossRef
74.
Zurück zum Zitat Heymsfield AJ, Westbrook CD (2010) Advances in the estimation of ice particle fall speeds using laboratory and field measurements. Am MeteorolD Soc 2469–2482CrossRef Heymsfield AJ, Westbrook CD (2010) Advances in the estimation of ice particle fall speeds using laboratory and field measurements. Am MeteorolD Soc 2469–2482CrossRef
75.
Zurück zum Zitat Mitchell DL (1996) use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J Atmos Sci 53:1710–1723CrossRef Mitchell DL (1996) use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J Atmos Sci 53:1710–1723CrossRef
76.
Zurück zum Zitat Stringham GE, Simons DB, Guy HP (1969) The behaviour of large particles falling in quiescent liquids. U.S, Department of Interior Stringham GE, Simons DB, Guy HP (1969) The behaviour of large particles falling in quiescent liquids. U.S, Department of Interior
77.
Zurück zum Zitat Field SB, Klaus M, Moore MG, Nori F (1977) Chaotic dynamics of falling disks. Nature 388:252–254CrossRef Field SB, Klaus M, Moore MG, Nori F (1977) Chaotic dynamics of falling disks. Nature 388:252–254CrossRef
78.
Zurück zum Zitat Maxwell JC (1853) On a particular case of the descent of a heavy body in a resisting medium. Camb Dublin Math J 9:115–118 Maxwell JC (1853) On a particular case of the descent of a heavy body in a resisting medium. Camb Dublin Math J 9:115–118
79.
Zurück zum Zitat Dupleich P (1941) Rotation in free fall of rectangular wings of elongated shape. NACA Tech. Memo 1201:1–99 Dupleich P (1941) Rotation in free fall of rectangular wings of elongated shape. NACA Tech. Memo 1201:1–99
80.
Zurück zum Zitat Smith EH (1971) Autorotating wings: an experimental investigation. J Fluid Mech 50:513–534CrossRef Smith EH (1971) Autorotating wings: an experimental investigation. J Fluid Mech 50:513–534CrossRef
81.
Zurück zum Zitat Belmonte A, Eisenberg H, Moses E (1998) From flutter to tumble: intertial drag and froude similarity in falling paper. Phys Rev Lett 81:345–348CrossRef Belmonte A, Eisenberg H, Moses E (1998) From flutter to tumble: intertial drag and froude similarity in falling paper. Phys Rev Lett 81:345–348CrossRef
82.
83.
84.
Zurück zum Zitat Andersen A, Pesavento U, Wang ZJ (2005a) Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J Fluid Mech 541:91–104MathSciNetMATHCrossRef Andersen A, Pesavento U, Wang ZJ (2005a) Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J Fluid Mech 541:91–104MathSciNetMATHCrossRef
85.
Zurück zum Zitat Auguste F, Magnaudet J, Fabre D (2013) Falling styles of disks. J Fluid Mech. 719:388–405MATHCrossRef Auguste F, Magnaudet J, Fabre D (2013) Falling styles of disks. J Fluid Mech. 719:388–405MATHCrossRef
86.
Zurück zum Zitat Churst M, Bouchet G, Dusek J (2013) Numerical simulation of the dynamics of freely falling discs. Phys Fluids 25:044102CrossRef Churst M, Bouchet G, Dusek J (2013) Numerical simulation of the dynamics of freely falling discs. Phys Fluids 25:044102CrossRef
87.
Zurück zum Zitat Jayaweera KOLF, Mason BJ (1965) The behaviour of freely falling cylinders and cones in a viscous fluid. J Fluid Mech 22:709–720MATHCrossRef Jayaweera KOLF, Mason BJ (1965) The behaviour of freely falling cylinders and cones in a viscous fluid. J Fluid Mech 22:709–720MATHCrossRef
88.
Zurück zum Zitat Gustavsson K, Einarsson J, Mehlig B (2014) Tumbling of small axisymmetric particles in random and turbulent flows. Phys Rev Lett 112:014501 Gustavsson K, Einarsson J, Mehlig B (2014) Tumbling of small axisymmetric particles in random and turbulent flows. Phys Rev Lett 112:014501
89.
Zurück zum Zitat Parsa S, Calzavarini E, Toschi F, Voth GA (2012) Rotation rate of rods in turbulent fluid flow. Phys Rev Lett 109:1–10CrossRef Parsa S, Calzavarini E, Toschi F, Voth GA (2012) Rotation rate of rods in turbulent fluid flow. Phys Rev Lett 109:1–10CrossRef
90.
Zurück zum Zitat Marcus GG, Parsa S, Kramel S, Ni R, Voth GA (2014) Measurement of the solid-body rotation of anisotropic particles in 3d turbulence. New J Phys 16:102001CrossRef Marcus GG, Parsa S, Kramel S, Ni R, Voth GA (2014) Measurement of the solid-body rotation of anisotropic particles in 3d turbulence. New J Phys 16:102001CrossRef
91.
Zurück zum Zitat Ni R, Ouellette NT, Voth GA (2014). Alignment of vorticity and rods with lagrangian fluid stretching in turbulence. J Fluid Mech 743 Ni R, Ouellette NT, Voth GA (2014). Alignment of vorticity and rods with lagrangian fluid stretching in turbulence. J Fluid Mech 743
93.
Zurück zum Zitat Shirolkar JS, Coimbra CFM, McQuay MQ (1996) Fundamental aspect of modelling turbulence particle dispersion in dilute flows. Prog Energy Combust 22:363–399 Shirolkar JS, Coimbra CFM, McQuay MQ (1996) Fundamental aspect of modelling turbulence particle dispersion in dilute flows. Prog Energy Combust 22:363–399
94.
Zurück zum Zitat Sun L, Lin JZ, Wu FL, Chen YM (2004) Effect of non-spherical particles on the fluid turbuelnce in a particulate pipe flow. J Hydrodyn 16(6) Sun L, Lin JZ, Wu FL, Chen YM (2004) Effect of non-spherical particles on the fluid turbuelnce in a particulate pipe flow. J Hydrodyn 16(6)
95.
Zurück zum Zitat Esteban LB, Shrimpton JS, Rogers P, Ingram R (2016) Three clean products from co-mingled waste using a novel hydrodynamic separator. Int J Sustain Dev Plan 11:792–803CrossRef Esteban LB, Shrimpton JS, Rogers P, Ingram R (2016) Three clean products from co-mingled waste using a novel hydrodynamic separator. Int J Sustain Dev Plan 11:792–803CrossRef
96.
Zurück zum Zitat Tropea C, Yarin A, Foss JF (2007) Handbook of experimental fluid mechanics. Springer, Berlin Tropea C, Yarin A, Foss JF (2007) Handbook of experimental fluid mechanics. Springer, Berlin
97.
Zurück zum Zitat Navier CLMH (1822) Memoire ur les lois du mouvement des fluides. Mem Acad Sci Inst Fr 6:389–440 Navier CLMH (1822) Memoire ur les lois du mouvement des fluides. Mem Acad Sci Inst Fr 6:389–440
98.
Zurück zum Zitat Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge
Metadaten
Titel
Introduction
verfasst von
Luis Blay Esteban
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-28136-6_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.