Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Personal computers, smartphones, video game consoles and several other gadgets have a processor based on the metal-oxide semiconductor field effect transistor (MOSFET).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Seabaugh. The tunneling transistor. IEEE Spectr. 31–34 (2013) A. Seabaugh. The tunneling transistor. IEEE Spectr. 31–34 (2013)
2.
Zurück zum Zitat International Technology Roadmap for Semiconductors (ITRS). Technical report, Semiconductor Industry Association (SIA), (2013) International Technology Roadmap for Semiconductors (ITRS). Technical report, Semiconductor Industry Association (SIA), (2013)
3.
Zurück zum Zitat W. Porod, Quantum-dot devices and quantum-dot cellular automata. J. Frankl. Inst. 334B(5/6), 1147–1175 (1997)CrossRefMATH W. Porod, Quantum-dot devices and quantum-dot cellular automata. J. Frankl. Inst. 334B(5/6), 1147–1175 (1997)CrossRefMATH
4.
Zurück zum Zitat K. Galatsis, A. Khitun, R. Ostroumov, K.L. Wang, W.R. Dichtel, E. Plummer, J.F. Stoddart, J.I. Zink, J.Y. Lee, Y.H. Xie, K.W. Kim, Alternate state variables for emerging nanoelectronic devices. IEEE Trans. Nanotechnol. 8(1), 66–75 (2009)CrossRef K. Galatsis, A. Khitun, R. Ostroumov, K.L. Wang, W.R. Dichtel, E. Plummer, J.F. Stoddart, J.I. Zink, J.Y. Lee, Y.H. Xie, K.W. Kim, Alternate state variables for emerging nanoelectronic devices. IEEE Trans. Nanotechnol. 8(1), 66–75 (2009)CrossRef
5.
Zurück zum Zitat A. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRef A. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRef
6.
Zurück zum Zitat J.P. Leburton, J. Kolodzey, S. Biggs, Bipolar tunneling field-effect transistor: a three-terminal negative differential resistance device for high-speed applications. Appl. Phys. Lett. 52(9), 1608–1620 (1988)CrossRef J.P. Leburton, J. Kolodzey, S. Biggs, Bipolar tunneling field-effect transistor: a three-terminal negative differential resistance device for high-speed applications. Appl. Phys. Lett. 52(9), 1608–1620 (1988)CrossRef
7.
Zurück zum Zitat T. Baba, Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 31(4B), L455–L457 (1992)CrossRef T. Baba, Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 31(4B), L455–L457 (1992)CrossRef
8.
Zurück zum Zitat S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)CrossRef S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)CrossRef
9.
Zurück zum Zitat T. Yamada, Analysis of submicron carbon nanotube field-effect transistors. Appl. Phys. Lett. 76(5), 628–630 (2000)CrossRef T. Yamada, Analysis of submicron carbon nanotube field-effect transistors. Appl. Phys. Lett. 76(5), 628–630 (2000)CrossRef
10.
Zurück zum Zitat A. Batchtold, P. Hadley, T. Nakanishi, C. Dekker, Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)CrossRef A. Batchtold, P. Hadley, T. Nakanishi, C. Dekker, Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)CrossRef
11.
Zurück zum Zitat K.K. Likharev, Single-electron devices and their applications. Proc. IEEE 87(4), 606–632 (1999)CrossRef K.K. Likharev, Single-electron devices and their applications. Proc. IEEE 87(4), 606–632 (1999)CrossRef
12.
Zurück zum Zitat K.L. Wang, A. Khitun, K. Galatsis, More than Moore’s law: Nanofabrics and architectures. Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM’07), pp. 139–143 (2007) K.L. Wang, A. Khitun, K. Galatsis, More than Moore’s law: Nanofabrics and architectures. Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM’07), pp. 139–143 (2007)
13.
Zurück zum Zitat A. Khitun, M. Bao, K.L. Wang, Spin wave magnetic nanofabric: a new approach to spin-based logic circuitry. IEEE Trans. Magn. 44, 2141–2152 (2008)CrossRef A. Khitun, M. Bao, K.L. Wang, Spin wave magnetic nanofabric: a new approach to spin-based logic circuitry. IEEE Trans. Magn. 44, 2141–2152 (2008)CrossRef
14.
Zurück zum Zitat S. Bandyopadhyay, V.P. Roychowdhury, Granular nanoelectronics. IEEE Potentials, 8–11 (1996) S. Bandyopadhyay, V.P. Roychowdhury, Granular nanoelectronics. IEEE Potentials, 8–11 (1996)
15.
Zurück zum Zitat A. Khitun, K. Wang, Nano scale computational architectures with spin wave bus. Superlattices Microstruct. 38, 184–200 (2005)CrossRef A. Khitun, K. Wang, Nano scale computational architectures with spin wave bus. Superlattices Microstruct. 38, 184–200 (2005)CrossRef
16.
Zurück zum Zitat C.S. Lent, P.D. Tougaw, W. Porod, G. Bernstein, Quantum cellular automata. Nanotechnology 49–57, (1993) C.S. Lent, P.D. Tougaw, W. Porod, G. Bernstein, Quantum cellular automata. Nanotechnology 49–57, (1993)
17.
Zurück zum Zitat J.D. Wood, D. Tougaw, Matrix multiplication using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 10(5), 1036–1042 (2011)CrossRef J.D. Wood, D. Tougaw, Matrix multiplication using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 10(5), 1036–1042 (2011)CrossRef
18.
Zurück zum Zitat J. Timler, C.S. Lent, Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)CrossRef J. Timler, C.S. Lent, Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)CrossRef
19.
Zurück zum Zitat K. Walus, T. Dysart, G. Jullien, R. Budiman, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–29 (2004)CrossRef K. Walus, T. Dysart, G. Jullien, R. Budiman, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–29 (2004)CrossRef
20.
Zurück zum Zitat C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef
21.
Zurück zum Zitat E.P. Blair, E. Yost, C.S. Lent, Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. (2009). doi:10.1007/s10825-009-0304-0 E.P. Blair, E. Yost, C.S. Lent, Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. (2009). doi:10.​1007/​s10825-009-0304-0
22.
Zurück zum Zitat J. Timler, C.S. Lent, Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94(2), 1050–1060 (2003)CrossRef J. Timler, C.S. Lent, Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94(2), 1050–1060 (2003)CrossRef
23.
Zurück zum Zitat M. Liu, Y. Lu, C. Lent, Molecular quantum-dot cellular automata: from molecular structure to circuit dynamics. J. Appl. Phys. 102, 034311–034317 (2007)CrossRef M. Liu, Y. Lu, C. Lent, Molecular quantum-dot cellular automata: from molecular structure to circuit dynamics. J. Appl. Phys. 102, 034311–034317 (2007)CrossRef
24.
Zurück zum Zitat A. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider, Realization of a functional cell for quantum dot cellular automata. Science 928–930 (1997) A. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider, Realization of a functional cell for quantum dot cellular automata. Science 928–930 (1997)
25.
Zurück zum Zitat A. Orlov, I. Amlani, G. Toth, C.S. Lent, G.H. Bernstein, G.L. Snider, Realization of a functional cell for quantum dot cellular automata. Science 928–930 (1997) A. Orlov, I. Amlani, G. Toth, C.S. Lent, G.H. Bernstein, G.L. Snider, Realization of a functional cell for quantum dot cellular automata. Science 928–930 (1997)
26.
Zurück zum Zitat R. Cowburn, M. Welland, Room temperature magnetic quantum cellular automata. Science, pp. 1466–1468 (2000) R. Cowburn, M. Welland, Room temperature magnetic quantum cellular automata. Science, pp. 1466–1468 (2000)
27.
Zurück zum Zitat M. Mitic, M.C. Cassidy, K.D. Peterson, R.P. Starrett, E. Gauja, R. Brenner, R.G. Clark, A.S. Dzurak, Demonstration of a silicon-based quantum cellular automata cell. Appl. Phys. Lett. 89, 013503–013511 (2006)CrossRef M. Mitic, M.C. Cassidy, K.D. Peterson, R.P. Starrett, E. Gauja, R. Brenner, R.G. Clark, A.S. Dzurak, Demonstration of a silicon-based quantum cellular automata cell. Appl. Phys. Lett. 89, 013503–013511 (2006)CrossRef
28.
Zurück zum Zitat S. Breitkreutz, J. Kiermaier, I. Eichwald, C. Hildbrand, G. Csaba, D. Schmitt-Landsiedel, M. Becherer, Experimental demonstration of a 1-bit full adder in perpendicular nanomagnetic logic. IEEE Trans. Magn. 49(7), 4464–4467 (2013) S. Breitkreutz, J. Kiermaier, I. Eichwald, C. Hildbrand, G. Csaba, D. Schmitt-Landsiedel, M. Becherer, Experimental demonstration of a 1-bit full adder in perpendicular nanomagnetic logic. IEEE Trans. Magn. 49(7), 4464–4467 (2013)
29.
Zurück zum Zitat R. Lindaman, A theorem for deriving majority-logic networks within an augmented Boolean algebra. IEEE Trans. Electron. Comput. EC-9(3), 338–342 (1960) R. Lindaman, A theorem for deriving majority-logic networks within an augmented Boolean algebra. IEEE Trans. Electron. Comput. EC-9(3), 338–342 (1960)
30.
Zurück zum Zitat M. Cohn, R. Lindaman, Axiomatic majority-decision logic. IEEE Trans. Electron. Comput. EC-10(1), 17–21 (1961) M. Cohn, R. Lindaman, Axiomatic majority-decision logic. IEEE Trans. Electron. Comput. EC-10(1), 17–21 (1961)
31.
Zurück zum Zitat F. Miyata, Realization of arbitrary logical functions using majority elements. IEEE Trans. Electron. Comput. EC-12(3), 183–191 (1963) F. Miyata, Realization of arbitrary logical functions using majority elements. IEEE Trans. Electron. Comput. EC-12(3), 183–191 (1963)
32.
Zurück zum Zitat S.B. Akers, On the algebraic manipulation of majority logic. IEEE Trans. Electronic Comput. EC-10(4), 779–779 (1961) S.B. Akers, On the algebraic manipulation of majority logic. IEEE Trans. Electronic Comput. EC-10(4), 779–779 (1961)
33.
Zurück zum Zitat H.S. Miller, R.O. Winder, Majority logic synthesis by geometric methods. IEEE Trans. Electron. Comput. EC-11(1), 89–90 (1962) H.S. Miller, R.O. Winder, Majority logic synthesis by geometric methods. IEEE Trans. Electron. Comput. EC-11(1), 89–90 (1962)
34.
Zurück zum Zitat S.B. Akers, Synthesis of combinational logic using three-input majority gates, in Proceedings of the Third Annual Symposium on Switching Circuit Theory and Logical Design, pp. 149–158, 7–12 (1962) S.B. Akers, Synthesis of combinational logic using three-input majority gates, in Proceedings of the Third Annual Symposium on Switching Circuit Theory and Logical Design, pp. 149–158, 7–12 (1962)
35.
Zurück zum Zitat E.M. Riseman, A realization algorithm using three-input majority elements. IEEE Trans. Electron. Comput. EC-16(4), 456–462 (1967) E.M. Riseman, A realization algorithm using three-input majority elements. IEEE Trans. Electron. Comput. EC-16(4), 456–462 (1967)
36.
Zurück zum Zitat R. Zhang, K. Walus, W. Wang, G.A. Jullien, A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)CrossRef R. Zhang, K. Walus, W. Wang, G.A. Jullien, A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)CrossRef
37.
Zurück zum Zitat R. Zhang, P. Gupta, N.K. Jha, Synthesis of majority and minority networks and its applications to QCA, TPL, and SET based nanotechnologies, in Proceedings of International Conference on VLSI Design, pp. 229–234 (2005) R. Zhang, P. Gupta, N.K. Jha, Synthesis of majority and minority networks and its applications to QCA, TPL, and SET based nanotechnologies, in Proceedings of International Conference on VLSI Design, pp. 229–234 (2005)
38.
Zurück zum Zitat M. Awais, M. Vacca, M. Graziano, M.R. Roch, G. Masera, Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12(3), 368–377 (2013)CrossRef M. Awais, M. Vacca, M. Graziano, M.R. Roch, G. Masera, Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12(3), 368–377 (2013)CrossRef
39.
Zurück zum Zitat K. Kong, Y. Shang, R. Lu, An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9(2), 170–183 (2010)CrossRef K. Kong, Y. Shang, R. Lu, An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9(2), 170–183 (2010)CrossRef
40.
Zurück zum Zitat R. Zhang, K. Walus, W. Wang, G.A. Jullien, Performance comparison of quantum-dot cellular automata adders, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2005), pp. 2522–2526 (2005) R. Zhang, K. Walus, W. Wang, G.A. Jullien, Performance comparison of quantum-dot cellular automata adders, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2005), pp. 2522–2526 (2005)
41.
Zurück zum Zitat H. Cho, E. Swartzlander, Modular design of conditional sum adders using quantum-dot cellular automata, In Proceedings of Sixth IEEE Conference on Nanotechnology (IEEE-NANO 2006), pp. 363–366 (2006) H. Cho, E. Swartzlander, Modular design of conditional sum adders using quantum-dot cellular automata, In Proceedings of Sixth IEEE Conference on Nanotechnology (IEEE-NANO 2006), pp. 363–366 (2006)
42.
Zurück zum Zitat R. Tang, F. Zheng, Y-B. Kim, QCA-based nano circuits design [adder design example], in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2527–2530 (2005) R. Tang, F. Zheng, Y-B. Kim, QCA-based nano circuits design [adder design example], in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2527–2530 (2005)
43.
Zurück zum Zitat S. Bhanja, S. Sarkar, Probabilistic modeling of QCA circuits using Bayesian networks. IEEE Trans. Nanotechnol. 5(6), 657–670 (2006)CrossRef S. Bhanja, S. Sarkar, Probabilistic modeling of QCA circuits using Bayesian networks. IEEE Trans. Nanotechnol. 5(6), 657–670 (2006)CrossRef
44.
Zurück zum Zitat H. Cho, E.E. Swartzlander, Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 6(3), 374–383 (2007)CrossRef H. Cho, E.E. Swartzlander, Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 6(3), 374–383 (2007)CrossRef
45.
Zurück zum Zitat K. Kim, K. Wu, R. Karri, The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 26(1), 176–183 (2007)CrossRef K. Kim, K. Wu, R. Karri, The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 26(1), 176–183 (2007)CrossRef
46.
Zurück zum Zitat T.J. Dysart, P.M. Kogge, Probabilistic analysis of a molecular quantum-dot cellular automata adder, in Proceedings of IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, pp. 478–486 (2007) T.J. Dysart, P.M. Kogge, Probabilistic analysis of a molecular quantum-dot cellular automata adder, in Proceedings of IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, pp. 478–486 (2007)
47.
Zurück zum Zitat T. Dysart, P.M. Kogge, Analyzing the inherent reliability of moderately sized magnetic and electrostatic QCA circuits via probabilistic transfer matrices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17(4), 507–516 (2009)CrossRef T. Dysart, P.M. Kogge, Analyzing the inherent reliability of moderately sized magnetic and electrostatic QCA circuits via probabilistic transfer matrices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17(4), 507–516 (2009)CrossRef
48.
Zurück zum Zitat I. Hanninen, J. Takala, Robust adders based on quantum-dot cellular automata, in Proceedings of IEEE International Conference on Application-Specific Systems, Architectures and Processors, pp. 391–396 (2007) I. Hanninen, J. Takala, Robust adders based on quantum-dot cellular automata, in Proceedings of IEEE International Conference on Application-Specific Systems, Architectures and Processors, pp. 391–396 (2007)
49.
Zurück zum Zitat S. Srivastava, S. Sarkar, S. Bhanja, Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)CrossRef S. Srivastava, S. Sarkar, S. Bhanja, Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)CrossRef
50.
Zurück zum Zitat V.A. Mardiris, I.G. Karafyllidis, Design and simulation of modular \(2^n\) to 1 quantum-dot cellular automata (QCA) multiplexers. Int. J. Circuit Theor. Appl. 38, 771–785 (2010)MATH V.A. Mardiris, I.G. Karafyllidis, Design and simulation of modular \(2^n\) to 1 quantum-dot cellular automata (QCA) multiplexers. Int. J. Circuit Theor. Appl. 38, 771–785 (2010)MATH
51.
Zurück zum Zitat H. Cho, E.E. Swartzlander, Adder and multiplier designs in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)CrossRefMathSciNet H. Cho, E.E. Swartzlander, Adder and multiplier designs in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)CrossRefMathSciNet
52.
Zurück zum Zitat S. Perri, P. Corsonello, New methodology for the design of efficient binary addition circuits in QCA. IEEE Trans. Nanotechnol. 11(6), 1192–1200 (2012)CrossRef S. Perri, P. Corsonello, New methodology for the design of efficient binary addition circuits in QCA. IEEE Trans. Nanotechnol. 11(6), 1192–1200 (2012)CrossRef
Metadaten
Titel
Introduction
verfasst von
K. Sridharan
Vikramkumar Pudi
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-16688-9_1