Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Dr. Huibin Wei

Erschienen in: Studying Cell Metabolism and Cell Interactions Using Microfluidic Devices Coupled with Mass Spectrometry

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microfluidic technology, also called “lab on a chip” (LOC), miniaturized the basic units of biological, chemical and medical laboratories using a chip with a size of only several square centimeters. This technology is rapidly developing in recent years. The manipulations of sample preparation, reaction, separation, and detection were integrated into micro-scale channels, in order to achieve a portable, automatic, rapid, and accurate analysis system. The concept of micro-total analysis systems (μTAS) was first defined by Manz [1] in 1990. During the last 30years, micro-fabricating techniques developed rapidly, as well as the separation and detection methods. Thus, the microfluidic devices fabrication was greatly improved. Micro-valves [2] and micro-reactors [3] were successfully integrated in the microfluidic devices, which provided the essential conditions for the integration and automation of microfluidic devices. As a fast developing analysis technique, μTAS was widely applied in various research fields, particularly in disease diagnosis, environment monitoring, immunoassays, and protein research [4].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems – a novel concept for chemical sensing. Sens Actuat B Chem 1:244–248 Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems – a novel concept for chemical sensing. Sens Actuat B Chem 1:244–248
2.
Zurück zum Zitat Emrich CA, Tian HJ, Medintz IL, Mathies RA (2002) Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem 74:5076–5083 Emrich CA, Tian HJ, Medintz IL, Mathies RA (2002) Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem 74:5076–5083
3.
Zurück zum Zitat Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584 Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584
4.
Zurück zum Zitat Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal Chem 76:3373–3385 Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal Chem 76:3373–3385
5.
Zurück zum Zitat Liang SL, Chan DW (2007) Enzymes and related proteins as cancer biomarkers: a proteomic approach. Clin Chim Acta 381:93–97 Liang SL, Chan DW (2007) Enzymes and related proteins as cancer biomarkers: a proteomic approach. Clin Chim Acta 381:93–97
6.
Zurück zum Zitat Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY, Putnam AJ, Jeon NL (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9:1740–1748 Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY, Putnam AJ, Jeon NL (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9:1740–1748
7.
Zurück zum Zitat Sung JH, Shuler ML (2009) A micro cell culture analog (mu CCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9:1385–1394 Sung JH, Shuler ML (2009) A micro cell culture analog (mu CCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9:1385–1394
8.
Zurück zum Zitat Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:269–275 Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:269–275
9.
Zurück zum Zitat Tourovskaia A, Figueroa-Masot X, Folch A (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5:14–19 Tourovskaia A, Figueroa-Masot X, Folch A (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5:14–19
10.
Zurück zum Zitat Yamada M, Hirano T, Yasuda M, Seki M (2006) A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing. Lab Chip 6:179–184 Yamada M, Hirano T, Yasuda M, Seki M (2006) A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing. Lab Chip 6:179–184
11.
Zurück zum Zitat Paguirigan A, Beebe DJ (2006) Gelatin based microfluidic devices for cell culture. Lab Chip 6:407–413 Paguirigan A, Beebe DJ (2006) Gelatin based microfluidic devices for cell culture. Lab Chip 6:407–413
12.
Zurück zum Zitat Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu HR (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7:302–309 Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu HR (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7:302–309
13.
Zurück zum Zitat Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563 Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563
14.
Zurück zum Zitat Yao B, Luo GA, Feng X, Wang W, Chen LX, Wang YM (2004) A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4:603–607 Yao B, Luo GA, Feng X, Wang W, Chen LX, Wang YM (2004) A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4:603–607
15.
Zurück zum Zitat Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980 Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980
16.
Zurück zum Zitat Choi S, Song S, Choi C, Park JK (2009) Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal Chem 81:1964–1968 Choi S, Song S, Choi C, Park JK (2009) Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal Chem 81:1964–1968
17.
Zurück zum Zitat Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581–3586 Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581–3586
18.
Zurück zum Zitat Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129:1959–1967 Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129:1959–1967
19.
Zurück zum Zitat McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75:5646–5655 McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75:5646–5655
20.
Zurück zum Zitat Lee JN, Jiang X, Ryan D, Whitesides GM (2004) Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20:11684–11691 Lee JN, Jiang X, Ryan D, Whitesides GM (2004) Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20:11684–11691
21.
Zurück zum Zitat Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5:1348–1354 Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5:1348–1354
22.
Zurück zum Zitat Wu HK, Ren KN, Zhao YH, Su J, Ryan D (2010) Convenient method for modifying poly(dimethylsiloxane) to be airtight and resistive against absorption of small molecules. Anal Chem 82:5965–5971 Wu HK, Ren KN, Zhao YH, Su J, Ryan D (2010) Convenient method for modifying poly(dimethylsiloxane) to be airtight and resistive against absorption of small molecules. Anal Chem 82:5965–5971
23.
Zurück zum Zitat Lai S, Wang SN, Luo J, Lee LJ, Yang ST, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837 Lai S, Wang SN, Luo J, Lee LJ, Yang ST, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837
24.
Zurück zum Zitat Mehta G, Lee J, Cha W, Tung YC, Linderman JJ, Takayama S (2009) Hard Top soft bottom microfluidic devices for cell culture and chemical analysis. Anal Chem 81:3714–3722 Mehta G, Lee J, Cha W, Tung YC, Linderman JJ, Takayama S (2009) Hard Top soft bottom microfluidic devices for cell culture and chemical analysis. Anal Chem 81:3714–3722
25.
Zurück zum Zitat Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang YD, Borenstein JT, Langer R (2006) Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169 Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang YD, Borenstein JT, Langer R (2006) Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169
26.
Zurück zum Zitat Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang YD (2005) Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 11:302–309 Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang YD (2005) Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 11:302–309
27.
Zurück zum Zitat Heo J, Thomas KJ, Seong GH, Crooks RM (2003) A microfluidic bioreactor based on hydrogel-entrapped E. coli: cell viability, lysis, and intracellular enzyme reactions. Anal Chem 75:22–26 Heo J, Thomas KJ, Seong GH, Crooks RM (2003) A microfluidic bioreactor based on hydrogel-entrapped E. coli: cell viability, lysis, and intracellular enzyme reactions. Anal Chem 75:22–26
28.
Zurück zum Zitat Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756–762 Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756–762
29.
Zurück zum Zitat Liu MC, Ho D, Tai YC (2008) Monolithic fabrication of three-dimensional microfluidic networks for constructing cell culture array with an integrated combinatorial mixer. Sens Actuat B Chem 129:826–833 Liu MC, Ho D, Tai YC (2008) Monolithic fabrication of three-dimensional microfluidic networks for constructing cell culture array with an integrated combinatorial mixer. Sens Actuat B Chem 129:826–833
30.
Zurück zum Zitat Kim MJ, Breuer KS (2008) Microfluidic pump powered by self-organizing bacteria. Small 4:111–120 Kim MJ, Breuer KS (2008) Microfluidic pump powered by self-organizing bacteria. Small 4:111–120
31.
Zurück zum Zitat Meyvantsson I, Warrick JW, Hayes S, Skoien A, Beebe DJ (2008) Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8:717–724 Meyvantsson I, Warrick JW, Hayes S, Skoien A, Beebe DJ (2008) Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8:717–724
32.
Zurück zum Zitat Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116 Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116
33.
Zurück zum Zitat Hulme SE, Shevkoplyas SS, Whitesides GM (2009) Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices. Lab Chip 9:79–86 Hulme SE, Shevkoplyas SS, Whitesides GM (2009) Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices. Lab Chip 9:79–86
34.
Zurück zum Zitat King KR, Wang SH, Irimia D, Jayaraman A, Toner M, Yarmush ML (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7:77–85 King KR, Wang SH, Irimia D, Jayaraman A, Toner M, Yarmush ML (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7:77–85
35.
Zurück zum Zitat Berger M, Castelino J, Huang R, Shah M, Austin RH (2001) Design of a microfabricated magnetic cell separator. Electrophoresis 22:3883–3892 Berger M, Castelino J, Huang R, Shah M, Austin RH (2001) Design of a microfabricated magnetic cell separator. Electrophoresis 22:3883–3892
36.
Zurück zum Zitat Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85:1063–1065 Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85:1063–1065
37.
Zurück zum Zitat Furdui VI, Harrison DJ (2004) Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 4:614–618 Furdui VI, Harrison DJ (2004) Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 4:614–618
38.
Zurück zum Zitat Umehara S, Wakamoto Y, Inoue I, Yasuda K (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 305:534–540 Umehara S, Wakamoto Y, Inoue I, Yasuda K (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 305:534–540
39.
Zurück zum Zitat Enger J, Goksor M, Ramser K, Hagberg P, Hanstorp D (2004) Optical tweezers applied to a microfluidic system. Lab Chip 4:196–200 Enger J, Goksor M, Ramser K, Hagberg P, Hanstorp D (2004) Optical tweezers applied to a microfluidic system. Lab Chip 4:196–200
40.
Zurück zum Zitat Yang MS, Li CW, Yang J (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991–4001 Yang MS, Li CW, Yang J (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991–4001
41.
Zurück zum Zitat Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A (2005) Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab Chip 5:49–55 Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A (2005) Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab Chip 5:49–55
42.
Zurück zum Zitat Kobel S, Valero A, Latt J, Renaud P, Lutolf M (2010) Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab Chip 10:857–863 Kobel S, Valero A, Latt J, Renaud P, Lutolf M (2010) Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab Chip 10:857–863
43.
Zurück zum Zitat Ogunniyi AO, Story CM, Papa E, Guillen E, Love JC (2009) Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4:767–782 Ogunniyi AO, Story CM, Papa E, Guillen E, Love JC (2009) Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4:767–782
44.
Zurück zum Zitat Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449 Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449
45.
Zurück zum Zitat Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6:147–152 Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6:147–152
46.
Zurück zum Zitat Frimat JP, Becker M, Chiang YY, Marggraf U, Janasek D, Hengstler JG, Franzke J, West J (2011) A microfluidic array with cellular valving for single cell co-culture. Lab Chip 11:231–237 Frimat JP, Becker M, Chiang YY, Marggraf U, Janasek D, Hengstler JG, Franzke J, West J (2011) A microfluidic array with cellular valving for single cell co-culture. Lab Chip 11:231–237
47.
Zurück zum Zitat Liu CS, Liu JJ, Gao D, Ding MY, Lin JM (2010) Fabrication of microwell arrays based on two-dimensional ordered polystyrene microspheres for high-throughput single-cell analysis. Anal Chem 82:9418–9424 Liu CS, Liu JJ, Gao D, Ding MY, Lin JM (2010) Fabrication of microwell arrays based on two-dimensional ordered polystyrene microspheres for high-throughput single-cell analysis. Anal Chem 82:9418–9424
48.
Zurück zum Zitat Lee SH, Jeong HE, Park MC, Hur JY, Cho HS, Park SH, Suh KY (2008) Fabrication of hollow polymeric microstructures for shear-protecting cell containers. Adv Mater 20:788–792 Lee SH, Jeong HE, Park MC, Hur JY, Cho HS, Park SH, Suh KY (2008) Fabrication of hollow polymeric microstructures for shear-protecting cell containers. Adv Mater 20:788–792
49.
Zurück zum Zitat Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer R (2005) Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 5:1380–1386 Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer R (2005) Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 5:1380–1386
50.
Zurück zum Zitat Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634 Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634
51.
Zurück zum Zitat Park MC, Hur JY, Cho HS, Park SH, Suh KY (2011) High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 11:79–86 Park MC, Hur JY, Cho HS, Park SH, Suh KY (2011) High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 11:79–86
52.
Zurück zum Zitat Park MC, Hur JY, Kwon KW, Park SH, Suh KY (2006) Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus. Lab Chip 6:988–994 Park MC, Hur JY, Kwon KW, Park SH, Suh KY (2006) Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus. Lab Chip 6:988–994
53.
Zurück zum Zitat Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846 Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846
54.
Zurück zum Zitat Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428 Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428
55.
Zurück zum Zitat Kim P, Kim DH, Kim B, Choi SK, Lee SH, Khademhosseini A, Langer R, Suh KY (2005) Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology 16:2420–2426 Kim P, Kim DH, Kim B, Choi SK, Lee SH, Khademhosseini A, Langer R, Suh KY (2005) Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology 16:2420–2426
56.
Zurück zum Zitat Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab Chip 10:1536–1542 Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab Chip 10:1536–1542
57.
Zurück zum Zitat Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21:920–925 Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21:920–925
58.
Zurück zum Zitat Au SH, Shih SCC, Wheeler AR (2011) Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed Microdevices 13:41–50 Au SH, Shih SCC, Wheeler AR (2011) Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed Microdevices 13:41–50
59.
Zurück zum Zitat Yang J, Li CW, Yang MS (2004) Hydrodynamic simulation of cell docking in microfluidic channels with different dam structures. Lab Chip 4:53–59 Yang J, Li CW, Yang MS (2004) Hydrodynamic simulation of cell docking in microfluidic channels with different dam structures. Lab Chip 4:53–59
60.
Zurück zum Zitat Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990 Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990
61.
Zurück zum Zitat Chronis N, Lee LP (2005) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 14:857–863 Chronis N, Lee LP (2005) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 14:857–863
62.
Zurück zum Zitat Revzin A, Sekine K, Sin A, Tompkins RG, Toner M (2005) Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab Chip 5:30–37 Revzin A, Sekine K, Sin A, Tompkins RG, Toner M (2005) Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab Chip 5:30–37
63.
Zurück zum Zitat Murthy SK, Sin A, Tompkins RG, Toner M (2004) Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 20:11649–11655 Murthy SK, Sin A, Tompkins RG, Toner M (2004) Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 20:11649–11655
64.
Zurück zum Zitat Xu Y, Phillips JA, Yan JL, Li QG, Fan ZH, Tan WH (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81:7436–7442 Xu Y, Phillips JA, Yan JL, Li QG, Fan ZH, Tan WH (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81:7436–7442
65.
Zurück zum Zitat Phillips JA, Xu Y, Xia Z, Fan ZH, Tan WH (2009) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 81:1033–1039 Phillips JA, Xu Y, Xia Z, Fan ZH, Tan WH (2009) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 81:1033–1039
66.
Zurück zum Zitat Wei HB, Li HF, Gao D, Lin JM (2010) Multi-channel microfluidic devices combined with electrospray ionization quadrupole time-of-flight mass spectrometry applied to the monitoring of glutamate release from neuronal cells. Analyst 135:2043–2050 Wei HB, Li HF, Gao D, Lin JM (2010) Multi-channel microfluidic devices combined with electrospray ionization quadrupole time-of-flight mass spectrometry applied to the monitoring of glutamate release from neuronal cells. Analyst 135:2043–2050
67.
Zurück zum Zitat Camelliti P, McCulloch AD, Kohl P (2005) Microstructured cocultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue. Microsc Microanal 11:249–259 Camelliti P, McCulloch AD, Kohl P (2005) Microstructured cocultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue. Microsc Microanal 11:249–259
68.
Zurück zum Zitat Park ES, Brown AC, DiFeo MA, Barker TH, Lu H (2010) Continuously perfused, non-cross-contaminating microfluidic chamber array for studying cellular responses to orthogonal combinations of matrix and soluble signals. Lab Chip 10:571–580 Park ES, Brown AC, DiFeo MA, Barker TH, Lu H (2010) Continuously perfused, non-cross-contaminating microfluidic chamber array for studying cellular responses to orthogonal combinations of matrix and soluble signals. Lab Chip 10:571–580
69.
Zurück zum Zitat Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647 Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647
70.
Zurück zum Zitat Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489 Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489
71.
Zurück zum Zitat Kunze A, Giugliano M, Valero A, Renaud P (2011) Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 32:2088–2098 Kunze A, Giugliano M, Valero A, Renaud P (2011) Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 32:2088–2098
72.
Zurück zum Zitat Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668 Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668
73.
Zurück zum Zitat Walsh CL, Babin BM, Kasinskas RW, Foster JA, McGarry MJ, Forbes NS (2009) A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9:545–554 Walsh CL, Babin BM, Kasinskas RW, Foster JA, McGarry MJ, Forbes NS (2009) A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9:545–554
74.
Zurück zum Zitat Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu MM (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769 Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu MM (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769
75.
Zurück zum Zitat Glawdel T, Elbuken C, Lee LEJ, Ren CL (2009) Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)-towards water toxicity testing. Lab Chip 9:3243–3250 Glawdel T, Elbuken C, Lee LEJ, Ren CL (2009) Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)-towards water toxicity testing. Lab Chip 9:3243–3250
76.
Zurück zum Zitat Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89:1–8 Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89:1–8
77.
Zurück zum Zitat Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–406 Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–406
78.
Zurück zum Zitat Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI (2009) Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng 102:632–643 Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI (2009) Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng 102:632–643
79.
Zurück zum Zitat Huang GS, Mei YF, Thurmer DJ, Coric E, Schmidt OG (2009) Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. Lab Chip 9:263–268 Huang GS, Mei YF, Thurmer DJ, Coric E, Schmidt OG (2009) Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. Lab Chip 9:263–268
80.
Zurück zum Zitat Jung JH, Choi CH, Chung S, Chung YM, Lee CS (2009) Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab Chip 9:2596–2602 Jung JH, Choi CH, Chung S, Chung YM, Lee CS (2009) Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab Chip 9:2596–2602
81.
Zurück zum Zitat Fu AY, Chou HP, Spence C, Arnold FH, Quake SR (2002) An integrated microfabricated cell sorter. Anal Chem 74:2451–2457 Fu AY, Chou HP, Spence C, Arnold FH, Quake SR (2002) An integrated microfabricated cell sorter. Anal Chem 74:2451–2457
82.
Zurück zum Zitat Wang MM, Tu E, Raymond DE, Yang JM, Zhang HC, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83–87 Wang MM, Tu E, Raymond DE, Yang JM, Zhang HC, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83–87
83.
Zurück zum Zitat Liu YJ, Guo SS, Zhang ZL, Huang WH, Baigl D, Xie M, Chen Y, Pang DW (2007) A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis 28:4713–4722 Liu YJ, Guo SS, Zhang ZL, Huang WH, Baigl D, Xie M, Chen Y, Pang DW (2007) A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis 28:4713–4722
84.
Zurück zum Zitat Zheng S, Lin H, Liu JQ, Balic M, Datar R, Cote RJ, Tai YC (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162:154–161 Zheng S, Lin H, Liu JQ, Balic M, Datar R, Cote RJ, Tai YC (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162:154–161
85.
Zurück zum Zitat Andersen KB, Levinsen S, Svendsen WE, Okkels F (2009) A generalized theoretical model for “continuous particle separation in a microchannel having asymmetrically arranged multiple branches”. Lab Chip 9:1638–1639 Andersen KB, Levinsen S, Svendsen WE, Okkels F (2009) A generalized theoretical model for “continuous particle separation in a microchannel having asymmetrically arranged multiple branches”. Lab Chip 9:1638–1639
86.
Zurück zum Zitat Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M, Okano T (2007) Microfluidic devices for size-dependent separation of liver cells. Biomed Microdevices 9:637–645 Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M, Okano T (2007) Microfluidic devices for size-dependent separation of liver cells. Biomed Microdevices 9:637–645
87.
Zurück zum Zitat Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980 Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980
88.
Zurück zum Zitat Wu ZG, Willing B, Bjerketorp J, Jansson JK, Hjort K (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:1193–1199 Wu ZG, Willing B, Bjerketorp J, Jansson JK, Hjort K (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:1193–1199
89.
Zurück zum Zitat Huh D, Bahng JH, Ling YB, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79:1369–1376 Huh D, Bahng JH, Ling YB, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79:1369–1376
90.
Zurück zum Zitat Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW (2005) Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem 77:933–937 Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW (2005) Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem 77:933–937
91.
Zurück zum Zitat Huang R, Barber TA, Schmidt MA, Tompkins RG, Toner M, Bianchi DW, Kapur R, Flejter WL (2008) A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn 28:892–899 Huang R, Barber TA, Schmidt MA, Tompkins RG, Toner M, Bianchi DW, Kapur R, Flejter WL (2008) A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn 28:892–899
92.
Zurück zum Zitat SooHoo JR, Walker GM (2009) Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed Microdevices 11:323–329 SooHoo JR, Walker GM (2009) Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed Microdevices 11:323–329
93.
Zurück zum Zitat Lenshof A, Ahmad-Tajudin A, Jaras K, Sward-Nilsson AM, Aberg L, Marko-Varga G, Malm J, Lilja H, Laurell T (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81:6030–6037 Lenshof A, Ahmad-Tajudin A, Jaras K, Sward-Nilsson AM, Aberg L, Marko-Varga G, Malm J, Lilja H, Laurell T (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81:6030–6037
94.
Zurück zum Zitat Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80:3135–3143 Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80:3135–3143
95.
Zurück zum Zitat Gossett DR, Weaver WM, Mach AJ, Hur SC, Kwong Tse HT, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267 Gossett DR, Weaver WM, Mach AJ, Hur SC, Kwong Tse HT, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267
96.
Zurück zum Zitat Yamada M, Seki M (2006) Microfluidic particle sorter employing flow splitting and recombining. Anal Chem 78:1357–1362 Yamada M, Seki M (2006) Microfluidic particle sorter employing flow splitting and recombining. Anal Chem 78:1357–1362
97.
Zurück zum Zitat Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L (2008) Silicon-based microfilters for whole blood cell separation. Biomed Microdevices 10:251–257 Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L (2008) Silicon-based microfilters for whole blood cell separation. Biomed Microdevices 10:251–257
98.
Zurück zum Zitat Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung BM, Davidson NE, Sukumar S (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357:1335–1336 Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung BM, Davidson NE, Sukumar S (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357:1335–1336
99.
Zurück zum Zitat Fuqua SAW, Wiltschke C, Zhang QX, Borg A, Castles CG, Friedrichs WE, Hopp T, Hilsenbeck S, Mohsin S, O’Connell P, Allred DC (2000) A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res 60:4026–4029 Fuqua SAW, Wiltschke C, Zhang QX, Borg A, Castles CG, Friedrichs WE, Hopp T, Hilsenbeck S, Mohsin S, O’Connell P, Allred DC (2000) A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res 60:4026–4029
100.
Zurück zum Zitat Du Z, Cheng KH, Vaughn MW, Collie NL, Gollahon LS (2007) Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Biomed Microdevices 9:35–42 Du Z, Cheng KH, Vaughn MW, Collie NL, Gollahon LS (2007) Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Biomed Microdevices 9:35–42
101.
Zurück zum Zitat Plouffe BD, Njoka DN, Harris J, Liao JH, Horick NK, Radisic M, Murthy SK (2007) Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow. Langmuir 23:5050–5055 Plouffe BD, Njoka DN, Harris J, Liao JH, Horick NK, Radisic M, Murthy SK (2007) Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow. Langmuir 23:5050–5055
102.
Zurück zum Zitat Hasenbein ME, Andersen TT, Bizios R (2002) Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts. Biomaterials 23:3937–3942 Hasenbein ME, Andersen TT, Bizios R (2002) Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts. Biomaterials 23:3937–3942
103.
Zurück zum Zitat Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment – RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249:505–510 Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment – RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249:505–510
104.
Zurück zum Zitat Ellington AD, Szostak JW (1990) Invitro Selection of RNA Molecules That Bind Specific Ligands. Nature 346:818–822 Ellington AD, Szostak JW (1990) Invitro Selection of RNA Molecules That Bind Specific Ligands. Nature 346:818–822
105.
Zurück zum Zitat Neryl AA, Wrenger C, Ulrich H (2009) Recognition of biomarkers and cell-specific molecular signatures: aptamers as capture agents. J Sep Sci 32:1523–1530 Neryl AA, Wrenger C, Ulrich H (2009) Recognition of biomarkers and cell-specific molecular signatures: aptamers as capture agents. J Sep Sci 32:1523–1530
106.
Zurück zum Zitat Chang WC, Lee LP, Liepmann D (2005) Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip 5:64–73 Chang WC, Lee LP, Liepmann D (2005) Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip 5:64–73
107.
Zurück zum Zitat Morris KN, Jensen KB, Julin CM, Weil M, Gold L (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci USA 95:2902–2907 Morris KN, Jensen KB, Julin CM, Weil M, Gold L (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci USA 95:2902–2907
108.
Zurück zum Zitat Lien KY, Chuang YH, Hung LY, Hsu KF, Lai WW, Ho CL, Chou CY, Lee GB (2010) Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems. Lab Chip 10:2875–2886 Lien KY, Chuang YH, Hung LY, Hsu KF, Lai WW, Ho CL, Chou CY, Lee GB (2010) Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems. Lab Chip 10:2875–2886
109.
Zurück zum Zitat Herr JK, Smith JE, Medley CD, Shangguan DH, Tan WH (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78:2918–2924 Herr JK, Smith JE, Medley CD, Shangguan DH, Tan WH (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78:2918–2924
110.
Zurück zum Zitat Shangguan D, Cao ZH, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan WH (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139 Shangguan D, Cao ZH, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan WH (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139
111.
Zurück zum Zitat Mayer G, Ahmed MSL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc 5:1993–2004 Mayer G, Ahmed MSL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc 5:1993–2004
112.
Zurück zum Zitat Guo KT, Schafer R, Paul A, Gerber A, Ziemer G, Wendel HP (2006) A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 24:2220–2231 Guo KT, Schafer R, Paul A, Gerber A, Ziemer G, Wendel HP (2006) A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 24:2220–2231
113.
Zurück zum Zitat Cerchia L, de Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525 Cerchia L, de Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525
114.
Zurück zum Zitat Jeon NL, Baskaran H, Dertinger SKW, Whitesides GM, Van de Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20:826–830 Jeon NL, Baskaran H, Dertinger SKW, Whitesides GM, Van de Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20:826–830
115.
Zurück zum Zitat Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Laminar flows – Subcellular positioning of small molecules. Nature 411:1016–1016 Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Laminar flows – Subcellular positioning of small molecules. Nature 411:1016–1016
116.
Zurück zum Zitat Kim M, Kim T (2010) Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays. Anal Chem 82:9401–9409 Kim M, Kim T (2010) Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays. Anal Chem 82:9401–9409
117.
Zurück zum Zitat Walker GM, Sai JQ, Richmond A, Stremler M, Chung CY, Wikswo JP (2005) Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5:611–618 Walker GM, Sai JQ, Richmond A, Stremler M, Chung CY, Wikswo JP (2005) Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5:611–618
118.
Zurück zum Zitat Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, Kurzawski P, Wack KE, Stolz DB, Kamm R, Griffith LG (2002) A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 78:257–269 Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, Kurzawski P, Wack KE, Stolz DB, Kamm R, Griffith LG (2002) A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 78:257–269
119.
Zurück zum Zitat Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, Legallaisa C (2006) Study of osteoblastic cells in a microfluidic environment. Biomaterials 27:586–595 Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, Legallaisa C (2006) Study of osteoblastic cells in a microfluidic environment. Biomaterials 27:586–595
120.
Zurück zum Zitat Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138 Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138
121.
Zurück zum Zitat El-Ali J, Gaudet S, Gunther A, Sorger PK, Jensen KF (2005) Cell stimulus and lysis in a microfluidic device with segmented gas–liquid flow. Anal Chem 77:3629–3636 El-Ali J, Gaudet S, Gunther A, Sorger PK, Jensen KF (2005) Cell stimulus and lysis in a microfluidic device with segmented gas–liquid flow. Anal Chem 77:3629–3636
122.
Zurück zum Zitat Gilleland CL, Rohde CB, Zeng F, Yanik MF (2010) Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat Protoc 5:1888–1902 Gilleland CL, Rohde CB, Zeng F, Yanik MF (2010) Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat Protoc 5:1888–1902
123.
Zurück zum Zitat Easley CJ, Rocheleau JV, Head WS, Piston DW (2009) Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics. Anal Chem 81:9086–9095 Easley CJ, Rocheleau JV, Head WS, Piston DW (2009) Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics. Anal Chem 81:9086–9095
124.
Zurück zum Zitat Gao D, Liu JJ, Wei HB, Li HF, Guo GS, Lin JM (2010) A microfluidic approach for anticancer drug analysis based on hydrogel encapsulated tumor cells. Anal Chim Acta 665:7–14 Gao D, Liu JJ, Wei HB, Li HF, Guo GS, Lin JM (2010) A microfluidic approach for anticancer drug analysis based on hydrogel encapsulated tumor cells. Anal Chim Acta 665:7–14
125.
Zurück zum Zitat Lion N, Rohner TC, Dayon L, Arnaud IL, Damoc E, Youhnovski N, Wu ZY, Roussel C, Josserand J, Jensen H, Rossier JS, Przybylski M, Girault HH (2003) Microfluidic systems in proteomics. Electrophoresis 24:3533–3562 Lion N, Rohner TC, Dayon L, Arnaud IL, Damoc E, Youhnovski N, Wu ZY, Roussel C, Josserand J, Jensen H, Rossier JS, Przybylski M, Girault HH (2003) Microfluidic systems in proteomics. Electrophoresis 24:3533–3562
126.
Zurück zum Zitat Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis 23:734–739 Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis 23:734–739
127.
Zurück zum Zitat Kim A, Ah CS, Park CW, Yang J-H, Kim T, Ahn C-G, Park SH, Sung GY (2010) Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosens Bioelectron 25:1767–1773 Kim A, Ah CS, Park CW, Yang J-H, Kim T, Ahn C-G, Park SH, Sung GY (2010) Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosens Bioelectron 25:1767–1773
128.
Zurück zum Zitat Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–511 Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–511
129.
Zurück zum Zitat Dishinger JF, Reid KR, Kennedy RT (2009) Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem 81:3119–3127 Dishinger JF, Reid KR, Kennedy RT (2009) Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem 81:3119–3127
130.
Zurück zum Zitat Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335 Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335
131.
Zurück zum Zitat Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301 Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301
132.
Zurück zum Zitat Gustafsson M, Hirschberg D, Palmberg C, Jornvall H, Bergman T (2004) Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk. Anal Chem 76:345–350 Gustafsson M, Hirschberg D, Palmberg C, Jornvall H, Bergman T (2004) Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk. Anal Chem 76:345–350
133.
Zurück zum Zitat Liu HH, Felten C, Xue QF, Zhang BL, Jedrzejewski P, Karger BL, Foret F (2000) Development of multichannel devices with an array of electrospray tips far high-throughput mass spectrometry. Anal Chem 72:3303–3310 Liu HH, Felten C, Xue QF, Zhang BL, Jedrzejewski P, Karger BL, Foret F (2000) Development of multichannel devices with an array of electrospray tips far high-throughput mass spectrometry. Anal Chem 72:3303–3310
134.
Zurück zum Zitat Bings NH, Wang C, Skinner CD, Colyer CL, Thibault P, Harrison DJ (1999) Microfluidic devises connected to fused-silica capillaries with minimal dead volume. Anal Chem 71:3292–3296 Bings NH, Wang C, Skinner CD, Colyer CL, Thibault P, Harrison DJ (1999) Microfluidic devises connected to fused-silica capillaries with minimal dead volume. Anal Chem 71:3292–3296
135.
Zurück zum Zitat Lazar IM, Grym J, Foret F (2006) Microfabricated devices: a new sample introduction approach to mass spectrometry. Mass Spectrom Rev 25:573–594 Lazar IM, Grym J, Foret F (2006) Microfabricated devices: a new sample introduction approach to mass spectrometry. Mass Spectrom Rev 25:573–594
136.
Zurück zum Zitat Wang C, Oleschuk R, Ouchen F, Li JJ, Thibault P, Harrison DJ (2000) Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Rapid Commun Mass Spectrom 14:1377–1383 Wang C, Oleschuk R, Ouchen F, Li JJ, Thibault P, Harrison DJ (2000) Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Rapid Commun Mass Spectrom 14:1377–1383
137.
Zurück zum Zitat Benetton S, Kameoka J, Tan AM, Wachs T, Craighead H, Henion JD (2003) Chip-based P450 drug metabolism coupled to electrospray ionization-mass spectrometry detection. Anal Chem 75:6430–6436 Benetton S, Kameoka J, Tan AM, Wachs T, Craighead H, Henion JD (2003) Chip-based P450 drug metabolism coupled to electrospray ionization-mass spectrometry detection. Anal Chem 75:6430–6436
138.
Zurück zum Zitat Ma B, Zhang GH, Qin JH, Lin BC (2009) Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9:232–238 Ma B, Zhang GH, Qin JH, Lin BC (2009) Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9:232–238
139.
Zurück zum Zitat Xue QF, Foret F, Dunayevskiy YM, Zavracky PM, McGruer NE, Karger BL (1997) Multichannel microchip electrospray mass spectrometry. Anal Chem 69:426–430 Xue QF, Foret F, Dunayevskiy YM, Zavracky PM, McGruer NE, Karger BL (1997) Multichannel microchip electrospray mass spectrometry. Anal Chem 69:426–430
140.
Zurück zum Zitat Ramsey RS, Ramsey JM (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69(13):2617–2617, 69(6):1174–1174 Ramsey RS, Ramsey JM (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69(13):2617–2617, 69(6):1174–1174
141.
Zurück zum Zitat Huikko K, Ostman P, Grigoras K, Tuomikoski S, Tiainen VM, Soininen A, Puolanne K, Manz A, Franssila S, Kostiainen R, Kotiaho T (2003) Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon-poly(dimethylsiloxane) coated SU-8 masters. Lab Chip 3:67–72 Huikko K, Ostman P, Grigoras K, Tuomikoski S, Tiainen VM, Soininen A, Puolanne K, Manz A, Franssila S, Kostiainen R, Kotiaho T (2003) Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon-poly(dimethylsiloxane) coated SU-8 masters. Lab Chip 3:67–72
142.
Zurück zum Zitat Rohner TC, Rossier JS, Girault HH (2001) Polymer microspray with an integrated thick-film microelectrode. Anal Chem 73:5353–5357 Rohner TC, Rossier JS, Girault HH (2001) Polymer microspray with an integrated thick-film microelectrode. Anal Chem 73:5353–5357
143.
Zurück zum Zitat Sainiemi L, Nissila T, Jokinen V, Sikanen T, Kotiaho T, Kostiainen R, Ketola RA, Franssila S (2008) Fabrication and fluidic characterization of silicon micropillar array electrospray ionization chip. Sens Actuat B Chem 132:380–387 Sainiemi L, Nissila T, Jokinen V, Sikanen T, Kotiaho T, Kostiainen R, Ketola RA, Franssila S (2008) Fabrication and fluidic characterization of silicon micropillar array electrospray ionization chip. Sens Actuat B Chem 132:380–387
144.
Zurück zum Zitat Dethy JM, Ackermann BL, Delatour C, Henion JD, Schultz GA (2003) Demonstration of direct bioanalysis of drugs in plasma using nanoelectrospray infusion from a silicon chip coupled with tandem mass spectrometry. Anal Chem 75:805–811 Dethy JM, Ackermann BL, Delatour C, Henion JD, Schultz GA (2003) Demonstration of direct bioanalysis of drugs in plasma using nanoelectrospray infusion from a silicon chip coupled with tandem mass spectrometry. Anal Chem 75:805–811
145.
Zurück zum Zitat Arscott S, Le Gac S, Rolando C (2005) A polysilicon nanoelectrospray-mass spectrometry source based on a microfluidic capillary slot. Sens Actuat B Chem 106:741–749 Arscott S, Le Gac S, Rolando C (2005) A polysilicon nanoelectrospray-mass spectrometry source based on a microfluidic capillary slot. Sens Actuat B Chem 106:741–749
146.
Zurück zum Zitat Hoffmann P, Hausig U, Schulze P, Belder D (2007) Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer. Angew Chem Int Ed 46:4913–4916 Hoffmann P, Hausig U, Schulze P, Belder D (2007) Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer. Angew Chem Int Ed 46:4913–4916
147.
Zurück zum Zitat Zheng YF, Li HF, Guo ZH, Lin JM, Cai ZW (2007) Chip-based CE coupled to a quadrupole TOF mass spectrometer for the analysis of a glycopeptide. Electrophoresis 28:1305–1311 Zheng YF, Li HF, Guo ZH, Lin JM, Cai ZW (2007) Chip-based CE coupled to a quadrupole TOF mass spectrometer for the analysis of a glycopeptide. Electrophoresis 28:1305–1311
148.
Zurück zum Zitat Mao XL, Chu IK, Lin BC (2006) A sheath-flow nanoelectrospray interface of microchip electrophoresis MS for glycoprotein and glycopeptide analysis. Electrophoresis 27:5059–5067 Mao XL, Chu IK, Lin BC (2006) A sheath-flow nanoelectrospray interface of microchip electrophoresis MS for glycoprotein and glycopeptide analysis. Electrophoresis 27:5059–5067
149.
Zurück zum Zitat Kameoka J, Orth R, Ilic B, Czaplewski D, Wachs T, Craighead HG (2002) An electrospray ionization source for integration with microfluidics. Anal Chem 74:5897–5901 Kameoka J, Orth R, Ilic B, Czaplewski D, Wachs T, Craighead HG (2002) An electrospray ionization source for integration with microfluidics. Anal Chem 74:5897–5901
150.
Zurück zum Zitat Li FA, Wang CH, Her GR (2007) A sheathless poly(methyl methacrylate) chip-CE/MS interface fabricated using a wire-assisted epoxy-fixing method. Electrophoresis 28:1265–1273 Li FA, Wang CH, Her GR (2007) A sheathless poly(methyl methacrylate) chip-CE/MS interface fabricated using a wire-assisted epoxy-fixing method. Electrophoresis 28:1265–1273
151.
Zurück zum Zitat Zhang BL, Foret F, Karger BL (2000) A microdevice with integrated liquid junction for facile peptide and protein analysis by capillary electrophoresis/electrospray mass spectrometry. Anal Chem 72:1015–1022 Zhang BL, Foret F, Karger BL (2000) A microdevice with integrated liquid junction for facile peptide and protein analysis by capillary electrophoresis/electrospray mass spectrometry. Anal Chem 72:1015–1022
152.
Zurück zum Zitat Razunguzwa TT, Lenke J, Timperman AT (2005) An electrokinetic/hydrodynamic flow microfluidic CE-ESI-MS interface utilizing a hydrodynamic flow restrictor for delivery of samples under low EOF conditions. Lab Chip 5:851–855 Razunguzwa TT, Lenke J, Timperman AT (2005) An electrokinetic/hydrodynamic flow microfluidic CE-ESI-MS interface utilizing a hydrodynamic flow restrictor for delivery of samples under low EOF conditions. Lab Chip 5:851–855
153.
Zurück zum Zitat Xie J, Miao YN, Shih J, Tai YC, Lee TD (2005) Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. Anal Chem 77:6947–6953 Xie J, Miao YN, Shih J, Tai YC, Lee TD (2005) Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. Anal Chem 77:6947–6953
154.
Zurück zum Zitat Vollmer M, Horth P, Rozing G, Coute Y, Grimm R, Hochstrasser D, Sanchez JC (2006) Multi-dimensional HPLC/MS of the nucleolar proteome using HPLC-chip/MS. J Sep Sci 29:499–509 Vollmer M, Horth P, Rozing G, Coute Y, Grimm R, Hochstrasser D, Sanchez JC (2006) Multi-dimensional HPLC/MS of the nucleolar proteome using HPLC-chip/MS. J Sep Sci 29:499–509
155.
Zurück zum Zitat Tan AM, Benetton S, Henion JD (2003) Chip-based solid-phase extraction pretreatment for direct electrospray mass spectrometry analysis using an array of monolithic columns in a polymeric substrate. Anal Chem 75:5504–5511 Tan AM, Benetton S, Henion JD (2003) Chip-based solid-phase extraction pretreatment for direct electrospray mass spectrometry analysis using an array of monolithic columns in a polymeric substrate. Anal Chem 75:5504–5511
156.
Zurück zum Zitat Jo K, Heien ML, Thompson LB, Zhong M, Nuzzo RG, Sweedler JV (2007) Mass spectrometric imaging of peptide release from neuronal cells within microfluidic devices. Lab Chip 7:1454–1460 Jo K, Heien ML, Thompson LB, Zhong M, Nuzzo RG, Sweedler JV (2007) Mass spectrometric imaging of peptide release from neuronal cells within microfluidic devices. Lab Chip 7:1454–1460
157.
Zurück zum Zitat Willis RC (2006) Challenges for clinical diagnostic devices. Anal Chem 78:5261–5265 Willis RC (2006) Challenges for clinical diagnostic devices. Anal Chem 78:5261–5265
Metadaten
Titel
Introduction
verfasst von
Dr. Huibin Wei
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-32359-1_1

Neuer Inhalt