Skip to main content

2021 | OriginalPaper | Buchkapitel

5. Inverse Scattering

verfasst von : Tuncay Aktosun, Ricardo Weder

Erschienen in: Direct and Inverse Scattering for the Matrix Schrödinger Equation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we analyze the inverse scattering problem of recovery of the corresponding input data set D in the Faddeev class from a scattering data set S in the Marchenko class. We discuss the nonuniqueness arising in the inverse scattering problem if the scattering matrix is defined one way with the Dirichlet boundary condition and in a different way with a non-Dirichlet boundary condition, as usually done in the standard literature. We present the solution to the inverse scattering problem by analyzing the solvability of the Marchenko integral equation and the derivative Marchenko integral equation. We give a proof of the main characterization result presented in Theorem 2.​6.​1. By establishing the equivalents among various characterization properties, we provide the proofs for various alternate characterization results presented in Sect. 2.​7. We consider the inverse scattering problem from a given scattering matrix without having the bound-state information. From the given scattering matrix alone we show how to construct a scattering data set belonging to the Marchenko class so that the constructed scattering data set can be used as input into a properly posed inverse scattering problem. We present a proof of the two equivalent characterization results stated in Theorems 2.​7.​9 and 2.​7.​10, where the characterization involves the use of Levinson’s theorem. Next, we introduce and present a proof of Parseval’s equality expressing the completeness of the set consisting of the physical solution and the bound-state solutions in the study of the matrix Schrödinger operator on the half line with the general self-adjoint boundary condition. We present the generalized Fourier map and establish its properties. We then prove the characterization result stated in Theorem 2.​8.​1 involving the use of the generalized Fourier map. Moreover, we consider the characterization of the scattering data when the potentials are restricted to the class \(L^1_p(\mathbf R^+)\) for p > 1 instead of only p = 1 in the Faddeev class. Finally, we formulate the characterization of the scattering data in the special case of the purely Dirichlet boundary condition, which allows us to make a comparison and contrast with the characterization result of Agranovich and Marchenko.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
  1. R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd edn. (Academic, Amsterdam, 2003)MATH
  2. Z.S. Agranovich, V.A. Marchenko, The Inverse Problem of Scattering Theory (Gordon and Breach, New York, 1963)MATH
  3. T. Aktosun, M. Klaus, Inverse theory: problem on the line, in Scattering, ed. by E.R. Pike, P.C. Sabatier (Academic, London, 2001), pp. 770–785
  4. T. Aktosun, M. Klaus, Small-energy asymptotics for the Schrödinger equation on the line. Inverse Prob. 17, 619–632 (2001)MATH
  5. T. Aktosun, P. Sacks, M. Unlu, Inverse problems for selfadjoint Schrödinger operators on the half line with compactly supported potentials. J. Math. Phys. 56, 022106 (2015)MathSciNetMATH
  6. T. Aktosun, R. Weder, Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation. Inverse Prob. 22, 89–114 (2006)MATH
  7. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd edn. (Springer, New York, 1989)MATH
  8. P. Deift, E. Trubowitz, Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)MathSciNetView Article
  9. L.D. Faddeev, Properties of the S-matrix of the one-dimensional Schrödinger equation. Trudy Mat. Inst. Steklov 73, 314–336 (1964, in Russian) [Am. Math. Soc. Transl. (Ser. 2) 65, 139–166 (1967) (English translation)]
  10. I.M. Gel’fand, B.M. Levitan, On the determination of a differential equation from its spectral function. Izv. Akad. Nauk SSSR Ser. Mat. 15, 309–360 (1951, in Russian) [Am. Math. Soc. Transl. (Ser. 2) 1, 253–304 (1951) (English translation)]
  11. M.S. Harmer, The matrix Schrödinger operator and Schrödinger operator on graphs. Ph.D. Thesis. University of Auckland, Auckland (2004)
  12. V. Kostrykin, R. Schrader, Kirchhoff’s rule for quantum wires. J. Phys. A 32, 595–630 (1999)MathSciNetView Article
  13. V. Kostrykin, R. Schrader, Kirchhoff’s rule for quantum wires. II: The inverse problem with possible applications to quantum computers. Fortschr. Phys. 48, 703–716 (2000)MATH
  14. B.M. Levitan, Inverse Sturm–Liouville Problems (Nauka, Moscow, 1984, in Russian) [VNU Science Press, Utrecht, 1987 (English translation)]
  15. V.A. Marchenko, Sturm–Liouville Operators and Applications (Naukova Dumka, Kiev, 1977, in Russian) [Revised edn., American Mathematical Society, Chelsea Publishing, Providence, 2011 (English translation)]
  16. N.I. Muskhelishvili, Singular Integral Equations (Dover, New York, 1992)
  17. R.G. Newton, R. Jost, The construction of potentials from the S-matrix for systems of differential equations. Nuovo Cimento 1, 590–622 (1955)MathSciNetMATH
  18. R. Weder, Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions. J. Math. Phys. 56, 092103 (2015); Erratum, J. Math. Phys. 60, 019901 (2019)
Metadaten
Titel
Inverse Scattering
verfasst von
Tuncay Aktosun
Ricardo Weder
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-38431-9_5

Premium Partner