Skip to main content
Erschienen in: Geotechnical and Geological Engineering 1/2019

09.07.2018 | Original Paper

Investigation of Non-Darcy Flow for Fine Grained Materials

verfasst von: William Ovalle-Villamil, Inthuorn Sasanakul

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Research efforts have been done to determine the limit of validity of Darcy’s Law in various fields of engineering where viscous conditions of flow are likely exceeded. In geotechnical and geological engineering, the application of centrifuge modeling for studying flow through porous materials is complex because the seepage velocity scales proportionally to centrifuge gravity, resulting in greater potential for exceeding the limit of viscous flow. This limit is usually estimated based on Forchheimer’s Law and the concept of critical Reynolds number, Rcritic, but its interpretation remains ambiguous. This study provides new insights and establishes a connection between different theoretical approaches available in the literature. Centrifuge permeability tests were conducted at different gravitational levels for different materials. Effects of the characteristics of the porous media and centrifuge acceleration on the flow behavior were evaluated. Results show that parameters of Forchheimer’s Law remain constant regardless of the centrifuge acceleration. Values of Rcritic were obtained in a range from 0.2 to 11 depending on the characteristics of material. The interpretation of the limit of validity of Darcy’s Law was analyzed based on different definitions of Reynolds number and the Forchheimer number, and critical velocities of flow and hydraulic gradients were estimated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbood DW (2009) An experimental model for flow through porous media using water filter. In: Thirteenth international water and technology conference, Hurghada, Egypt, pp 883–893 Abbood DW (2009) An experimental model for flow through porous media using water filter. In: Thirteenth international water and technology conference, Hurghada, Egypt, pp 883–893
Zurück zum Zitat Andreasen RR, Canga E, Kjaergaard C, Iversen BV, Poulsen TG (2013) Relating water and air flow characteristics in coarse granular materials. Water Air Soil Pollut 224(4):1469CrossRef Andreasen RR, Canga E, Kjaergaard C, Iversen BV, Poulsen TG (2013) Relating water and air flow characteristics in coarse granular materials. Water Air Soil Pollut 224(4):1469CrossRef
Zurück zum Zitat Arulanandan K, Thompson PY, Kutter BL, Meegoda NJ, Muraleetharan KK, Yogachandran C (1988) Centrifuge modeling of transport processes for pollutants in soils. J Geotech Eng 114(2):185–205CrossRef Arulanandan K, Thompson PY, Kutter BL, Meegoda NJ, Muraleetharan KK, Yogachandran C (1988) Centrifuge modeling of transport processes for pollutants in soils. J Geotech Eng 114(2):185–205CrossRef
Zurück zum Zitat Bear J (2013) Dynamics of fluids in porous media. Dover Publications Inc, New York Bear J (2013) Dynamics of fluids in porous media. Dover Publications Inc, New York
Zurück zum Zitat Bo-Ming Y, Jian-Hua L (2004) A geometry model for tortuosity of flow path in porous media. Chin Phys Lett 21(8):1569CrossRef Bo-Ming Y, Jian-Hua L (2004) A geometry model for tortuosity of flow path in porous media. Chin Phys Lett 21(8):1569CrossRef
Zurück zum Zitat Burcharth HF, Christensen C (1991) On stationary and non-stationary porous flow in coarse granular materials: European Community, MAST G6-S: Project 1, Wave Action on and in coastal structures. Aalborg Universitetsforlag, Aalborg Burcharth HF, Christensen C (1991) On stationary and non-stationary porous flow in coarse granular materials: European Community, MAST G6-S: Project 1, Wave Action on and in coastal structures. Aalborg Universitetsforlag, Aalborg
Zurück zum Zitat Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166 Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166
Zurück zum Zitat Carman PC (1956) Flow of gases through porous media. Butterworths Scientific Publications, London Carman PC (1956) Flow of gases through porous media. Butterworths Scientific Publications, London
Zurück zum Zitat Carrier WD (2003) Goodbye, Hazen; Hello, Kozeny-Carman. J Geotech Geoenviron Eng 129(11):1054–1056CrossRef Carrier WD (2003) Goodbye, Hazen; Hello, Kozeny-Carman. J Geotech Geoenviron Eng 129(11):1054–1056CrossRef
Zurück zum Zitat Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(5):787–795CrossRef Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(5):787–795CrossRef
Zurück zum Zitat Comiti J, Renaud M (1989) A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles. Chem Eng Sci 44(7):1539–1545CrossRef Comiti J, Renaud M (1989) A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles. Chem Eng Sci 44(7):1539–1545CrossRef
Zurück zum Zitat Comiti J, Sabiri NE, Montillet A (2000) Experimental characterization of flow regimes in various porous media—III: limit of Darcy’s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids. Chem Eng Sci 55(15):3057–3061CrossRef Comiti J, Sabiri NE, Montillet A (2000) Experimental characterization of flow regimes in various porous media—III: limit of Darcy’s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids. Chem Eng Sci 55(15):3057–3061CrossRef
Zurück zum Zitat Dukhan N, Bağcı Ö, Özdemir M (2014) Metal foam hydrodynamics: flow regimes from pre-Darcy to turbulent. Int J Heat Mass Transf 77:114–123CrossRef Dukhan N, Bağcı Ö, Özdemir M (2014) Metal foam hydrodynamics: flow regimes from pre-Darcy to turbulent. Int J Heat Mass Transf 77:114–123CrossRef
Zurück zum Zitat Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94 Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94
Zurück zum Zitat Ergun S, Orning AA (1949) Fluid flow through randomly packed columns and fluidized beds. Ind Eng Chem 41(6):1179–1184CrossRef Ergun S, Orning AA (1949) Fluid flow through randomly packed columns and fluidized beds. Ind Eng Chem 41(6):1179–1184CrossRef
Zurück zum Zitat Fand RM, Kim BYK, Lam ACC, Phan RT (1987) Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. J Fluids Eng 109(3):268–274CrossRef Fand RM, Kim BYK, Lam ACC, Phan RT (1987) Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. J Fluids Eng 109(3):268–274CrossRef
Zurück zum Zitat Fourar M, Radilla G, Lenormand R, Moyne C (2004) On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media. Adv Water Resour 27(6):669–677CrossRef Fourar M, Radilla G, Lenormand R, Moyne C (2004) On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media. Adv Water Resour 27(6):669–677CrossRef
Zurück zum Zitat Garnier J, Gaudin C, Springman SM, Culligan PJ, Goodings D, Konig D et al (2007) Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int J Phys Modell Geotech 7(3):1CrossRef Garnier J, Gaudin C, Springman SM, Culligan PJ, Goodings D, Konig D et al (2007) Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int J Phys Modell Geotech 7(3):1CrossRef
Zurück zum Zitat Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974CrossRef Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974CrossRef
Zurück zum Zitat Goodings DJ (1994) Implications of changes in seepage flow regimes for centrifuge models. In: Proceedings of the international conference centrifuge, vol 94, pp 393–398. ISBN 90-5410-352-3 Goodings DJ (1994) Implications of changes in seepage flow regimes for centrifuge models. In: Proceedings of the international conference centrifuge, vol 94, pp 393–398. ISBN 90-5410-352-3
Zurück zum Zitat Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis, Boca Raton, p 893 Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis, Boca Raton, p 893
Zurück zum Zitat Khalifa A, Garnier J, Thomas P, Rault G (2000a) Scaling laws of water flow in centrifuge models. In: International symposium on physical modelling and testing in environmental geotechnics, vol 56, pp 207–216 Khalifa A, Garnier J, Thomas P, Rault G (2000a) Scaling laws of water flow in centrifuge models. In: International symposium on physical modelling and testing in environmental geotechnics, vol 56, pp 207–216
Zurück zum Zitat Khalifa MA, Wahyudi I, Thomas P (2000b) A new device for measuring permeability under high gradients and sinusoidal gradients. Geotech Test J 23(4):404–412CrossRef Khalifa MA, Wahyudi I, Thomas P (2000b) A new device for measuring permeability under high gradients and sinusoidal gradients. Geotech Test J 23(4):404–412CrossRef
Zurück zum Zitat Khalifa MA, Wahyudi I, Thomas P (2002) New extension of Darcy’s law to unsteady flows. Soils Found 42(6):53–63CrossRef Khalifa MA, Wahyudi I, Thomas P (2002) New extension of Darcy’s law to unsteady flows. Soils Found 42(6):53–63CrossRef
Zurück zum Zitat Kovács G (1981) Developments in water science—seepage hydraulics, Chap 3.2. Elsevier, New York Kovács G (1981) Developments in water science—seepage hydraulics, Chap 3.2. Elsevier, New York
Zurück zum Zitat Kozeny J (1927) Uber kapillare leitung der wasser in boden. R Acad Sci Vienna Proc Class I 136:271–306 Kozeny J (1927) Uber kapillare leitung der wasser in boden. R Acad Sci Vienna Proc Class I 136:271–306
Zurück zum Zitat Kreibich H, Piroth K, Seifert I, Maiwald H, Kunert U, Schwarz J, Merz B, Thieken AH (2009) Is flow velocity a significant parameter in flood damage modelling? Nat Hazards Earth Syst Sci 9(5):1679CrossRef Kreibich H, Piroth K, Seifert I, Maiwald H, Kunert U, Schwarz J, Merz B, Thieken AH (2009) Is flow velocity a significant parameter in flood damage modelling? Nat Hazards Earth Syst Sci 9(5):1679CrossRef
Zurück zum Zitat Laut P (1975) Application of centrifuge model tests in connexion with studies of flow patterns of contaminated water in soil structures. Geotechnique 25(2):401–406CrossRef Laut P (1975) Application of centrifuge model tests in connexion with studies of flow patterns of contaminated water in soil structures. Geotechnique 25(2):401–406CrossRef
Zurück zum Zitat Macdonald IF, El-Sayed MS, Mow K, Dullien FAL (1979) Flow through porous media—the Ergun equation revisited. Ind Eng Chem Fundam 18(3):199–208CrossRef Macdonald IF, El-Sayed MS, Mow K, Dullien FAL (1979) Flow through porous media—the Ergun equation revisited. Ind Eng Chem Fundam 18(3):199–208CrossRef
Zurück zum Zitat Mathias SA, Butler AP, Zhan H (2008) Approximate solutions for Forchheimer flow to a well. J Hydraul Eng 134(9):1318–1325CrossRef Mathias SA, Butler AP, Zhan H (2008) Approximate solutions for Forchheimer flow to a well. J Hydraul Eng 134(9):1318–1325CrossRef
Zurück zum Zitat Mesquita M, Testezlaf R, Ramirez JCS (2012) The effect of media bed characteristics and internal auxiliary elements on sand filter head loss. Agric Water Manag 115:178–185CrossRef Mesquita M, Testezlaf R, Ramirez JCS (2012) The effect of media bed characteristics and internal auxiliary elements on sand filter head loss. Agric Water Manag 115:178–185CrossRef
Zurück zum Zitat Moutsopoulos KN, Papaspyros IN, Tsihrintzis VA (2009) Experimental investigation of inertial flow processes in porous media. J Hydrol 374(3):242–254CrossRef Moutsopoulos KN, Papaspyros IN, Tsihrintzis VA (2009) Experimental investigation of inertial flow processes in porous media. J Hydrol 374(3):242–254CrossRef
Zurück zum Zitat Muskat M (1938) The flow of homogeneous fluids through porous media. Soil Sci 46(2):169CrossRef Muskat M (1938) The flow of homogeneous fluids through porous media. Soil Sci 46(2):169CrossRef
Zurück zum Zitat Nielsen P (1992) Coastal bottom boundary layers and sediment transport, vol 4. World Scientific Publishing Co Inc, Singapore Nielsen P (1992) Coastal bottom boundary layers and sediment transport, vol 4. World Scientific Publishing Co Inc, Singapore
Zurück zum Zitat Ovalle-Villamil W, Sasanakul I (2018) A new insight into the behavior of seepage flow in centrifuge modeling. In: 9th International conference of physical modelling in geotechnics, London Ovalle-Villamil W, Sasanakul I (2018) A new insight into the behavior of seepage flow in centrifuge modeling. In: 9th International conference of physical modelling in geotechnics, London
Zurück zum Zitat Richardson JF, Harker JH, Backhurst JR (2002) Chemical engineering—particle technology and separation processes, vol 2. Butterworth Heinemann, Oxford. ISBN 0-7506-4445-1 Richardson JF, Harker JH, Backhurst JR (2002) Chemical engineering—particle technology and separation processes, vol 2. Butterworth Heinemann, Oxford. ISBN 0-7506-4445-1
Zurück zum Zitat Salahi MB, Sedghi-Asl M, Parvizi M (2015) Nonlinear flow through a packed-column experiment. J Hydrol Eng 20(9):04015003CrossRef Salahi MB, Sedghi-Asl M, Parvizi M (2015) Nonlinear flow through a packed-column experiment. J Hydrol Eng 20(9):04015003CrossRef
Zurück zum Zitat Salem HS, Chilingarian GV (2000) Influence of porosity and direction of flow on tortuosity in unconsolidated porous media. Energy Sources 22(3):207–213CrossRef Salem HS, Chilingarian GV (2000) Influence of porosity and direction of flow on tortuosity in unconsolidated porous media. Energy Sources 22(3):207–213CrossRef
Zurück zum Zitat Sedghi-Asl M, Rahimi H, Salehi R (2014) Non-Darcy flow of water through a packed column test. Transp Porous Media 101(2):215–227CrossRef Sedghi-Asl M, Rahimi H, Salehi R (2014) Non-Darcy flow of water through a packed column test. Transp Porous Media 101(2):215–227CrossRef
Zurück zum Zitat Sidiropoulou MG, Moutsopoulos KN, Tsihrintzis VA (2007) Determination of Forchheimer equation coefficients a and b. Hydrol Process 21(4):534–554CrossRef Sidiropoulou MG, Moutsopoulos KN, Tsihrintzis VA (2007) Determination of Forchheimer equation coefficients a and b. Hydrol Process 21(4):534–554CrossRef
Zurück zum Zitat Singh DN, Gupta AK (2000) Modelling hydraulic conductivity in a small centrifuge. Can Geotech J 37(5):1150–1155CrossRef Singh DN, Gupta AK (2000) Modelling hydraulic conductivity in a small centrifuge. Can Geotech J 37(5):1150–1155CrossRef
Zurück zum Zitat Snoeijers R (2016) Non-linear flow in unconsolidated sandy porous media—an experimental investigation. Master’s thesis, Utrecht University Snoeijers R (2016) Non-linear flow in unconsolidated sandy porous media—an experimental investigation. Master’s thesis, Utrecht University
Zurück zum Zitat Stephenson DJ (1979) Rockfill in hydraulic engineering, vol 27. Elsevier, New York Stephenson DJ (1979) Rockfill in hydraulic engineering, vol 27. Elsevier, New York
Zurück zum Zitat Trussell RR, Chang M (1999) Review of flow through porous media as applied to head loss in water filters. J Environ Eng 125(11):998–1006CrossRef Trussell RR, Chang M (1999) Review of flow through porous media as applied to head loss in water filters. J Environ Eng 125(11):998–1006CrossRef
Zurück zum Zitat Wahyudi I, Montillet A, Khalifa AA (2002) Darcy and post-Darcy flows within different sands. J Hydraul Res 40(4):519–525CrossRef Wahyudi I, Montillet A, Khalifa AA (2002) Darcy and post-Darcy flows within different sands. J Hydraul Res 40(4):519–525CrossRef
Zurück zum Zitat Xu P, Yu B (2008) Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31(1):74–81CrossRef Xu P, Yu B (2008) Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31(1):74–81CrossRef
Zurück zum Zitat Zeng Z, Grigg R (2006) A criterion for non-Darcy flow in porous media. Transp Porous Media 63(1):57–69CrossRef Zeng Z, Grigg R (2006) A criterion for non-Darcy flow in porous media. Transp Porous Media 63(1):57–69CrossRef
Metadaten
Titel
Investigation of Non-Darcy Flow for Fine Grained Materials
verfasst von
William Ovalle-Villamil
Inthuorn Sasanakul
Publikationsdatum
09.07.2018
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 1/2019
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-018-0620-x

Weitere Artikel der Ausgabe 1/2019

Geotechnical and Geological Engineering 1/2019 Zur Ausgabe