Skip to main content

2021 | OriginalPaper | Buchkapitel

3. Investigation on the Kinetic Property of Redox Mediators

verfasst von : Youngmin Ko

Erschienen in: Development of Redox Mediators for High-Energy-Density and High-Efficiency Lithium-Oxygen Batteries

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this part, a comparative kinetic study for several RMs for OER by investigating the RM-assisted charging focusing on the chemical decomposition rate of discharge product and the RM diffusivity in the controlled lithium–oxygen cells. It was revealed that the overall RM kinetics have a positive correlation with the RM redox potential, and, the RM with multi-redox capability can display kinetic properties depending on its oxidation states. Among the investigated RMs, DMPZ2+ (5,10-dihydro-5,10-dimethylphenazine) exhibits the highest lithium peroxide decomposition rate, while TEMPO+ (2,2,6,6-tetramethyl-1-piperidinyloxy) shows the highest mass diffusion rate. Furthermore, the selection of electrolytes is observed to greatly influence the rate capability of the RM-assisted charge, and thereby be carefully considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O 2 and Li–S batteries with high energy storage. Nat Mater 11(1):19CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O 2 and Li–S batteries with high energy storage. Nat Mater 11(1):19CrossRef
2.
Zurück zum Zitat Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R et al (2011) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30CrossRef Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R et al (2011) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30CrossRef
3.
Zurück zum Zitat Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium−air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRef Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium−air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRef
4.
Zurück zum Zitat Li F, Chen J (2017) Mechanistic Evolution of Aprotic Lithium-Oxygen Batteries. Adv Energy Mater 7(24):1602934CrossRef Li F, Chen J (2017) Mechanistic Evolution of Aprotic Lithium-Oxygen Batteries. Adv Energy Mater 7(24):1602934CrossRef
5.
Zurück zum Zitat Aurbach D, McCloskey BD, Nazar LF, Bruce PG (2016) Advances in understanding mechanisms underpinning lithium–air batteries. Nat Energy 1(9):16128CrossRef Aurbach D, McCloskey BD, Nazar LF, Bruce PG (2016) Advances in understanding mechanisms underpinning lithium–air batteries. Nat Energy 1(9):16128CrossRef
6.
Zurück zum Zitat Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5(6):489–494CrossRef Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5(6):489–494CrossRef
7.
Zurück zum Zitat Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek Jr (2014) TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064 Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek Jr (2014) TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064
8.
Zurück zum Zitat Feng N, He P, Zhou H (2015) Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li–O2 battery. ChemSusChem 8(4):600–602CrossRef Feng N, He P, Zhou H (2015) Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li–O2 battery. ChemSusChem 8(4):600–602CrossRef
9.
Zurück zum Zitat Lim H-D, Lee B, Zheng Y, Hong J, Kim J, Gwon H et al (2016) Rational design of redox mediators for advanced Li–O2 batteries. Nat Energy 1:16066CrossRef Lim H-D, Lee B, Zheng Y, Hong J, Kim J, Gwon H et al (2016) Rational design of redox mediators for advanced Li–O2 batteries. Nat Energy 1:16066CrossRef
10.
Zurück zum Zitat Chen Y, Gao X, Johnson LR, Bruce PG (2018) Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat Commun 9(1):767CrossRef Chen Y, Gao X, Johnson LR, Bruce PG (2018) Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat Commun 9(1):767CrossRef
11.
Zurück zum Zitat Zhang W, Shen Y, Sun D, Huang Z, Zhou J, Yan H et al (2016) Promoting Li2O2 oxidation via solvent-assisted redox shuttle process for low overpotential Li-O2 battery. Nano Energy 30:43–51CrossRef Zhang W, Shen Y, Sun D, Huang Z, Zhou J, Yan H et al (2016) Promoting Li2O2 oxidation via solvent-assisted redox shuttle process for low overpotential Li-O2 battery. Nano Energy 30:43–51CrossRef
12.
Zurück zum Zitat Zhang J, Sun B, Zhao Y, Kretschmer K, Wang G (2017) Modified Tetrathiafulvalene as an organic conductor for improving performances of Li−O2 batteries. Angew Chem Int Ed 56(29):8505–8509 Zhang J, Sun B, Zhao Y, Kretschmer K, Wang G (2017) Modified Tetrathiafulvalene as an organic conductor for improving performances of Li−O2 batteries. Angew Chem Int Ed 56(29):8505–8509
13.
Zurück zum Zitat Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley New York Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley New York
14.
Zurück zum Zitat Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg 811(3):265–322 Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg 811(3):265–322
15.
Zurück zum Zitat Adams BD, Radtke C, Black R, Trudeau ML, Zaghib K, Nazar LF (2013) Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ Sci 6(6):1772–1778CrossRef Adams BD, Radtke C, Black R, Trudeau ML, Zaghib K, Nazar LF (2013) Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ Sci 6(6):1772–1778CrossRef
16.
Zurück zum Zitat Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2012) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135(1):494–500CrossRef Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2012) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135(1):494–500CrossRef
17.
Zurück zum Zitat Wandt J, Jakes P, Granwehr J, Gasteiger HA, Eichel RA (2016) Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew Chem 128(24):7006–7009CrossRef Wandt J, Jakes P, Granwehr J, Gasteiger HA, Eichel RA (2016) Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew Chem 128(24):7006–7009CrossRef
18.
Zurück zum Zitat Mahne N, Schafzahl B, Leypold C, Leypold M, Grumm S, Leitgeb A et al (2017) Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat Energy 2(5):17036CrossRef Mahne N, Schafzahl B, Leypold C, Leypold M, Grumm S, Leitgeb A et al (2017) Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat Energy 2(5):17036CrossRef
19.
Zurück zum Zitat Zheng P, Meng X, Wu J, Liu Z (2008) Density and viscosity measurements of dimethoxymethane and 1, 2-dimethoxyethane from 243 K to 373 K up to 20 MPa. Int J Thermophys 29(4):1244–1256CrossRef Zheng P, Meng X, Wu J, Liu Z (2008) Density and viscosity measurements of dimethoxymethane and 1, 2-dimethoxyethane from 243 K to 373 K up to 20 MPa. Int J Thermophys 29(4):1244–1256CrossRef
20.
Zurück zum Zitat Kodama D, Kanakubo M, Kokubo M, Hashimoto S, Nanjo H, Kato M (2011) Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilib 302(1):103–108CrossRef Kodama D, Kanakubo M, Kokubo M, Hashimoto S, Nanjo H, Kato M (2011) Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilib 302(1):103–108CrossRef
Metadaten
Titel
Investigation on the Kinetic Property of Redox Mediators
verfasst von
Youngmin Ko
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-2532-9_3