Skip to main content

2021 | OriginalPaper | Buchkapitel

3. Isogeometric Boundary Elements

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces isogeometric discretisations and discusses analytical properties of the corresponding discrete spaces with boundary element methods in mind.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This can be done thanks to Appendix 2 of [22], which proves that \(\pmb H_\times ^{-1/2}({\text {div}}_\Gamma ,\Gamma )\) and \(\pmb H^0({\text {div}}_\Gamma ,\Gamma )\) induce an interpolation scale, i.e., can be handled similarly to Theorem 2.​17. Specifically, see [22, Theorem 4.12] where the notation translates to ours via \(X=\pmb H^{-1/2}_\times ({\text {div}}_\Gamma ,\Gamma )\) and \(X^s=\pmb H^{s}_\times ({\text {div}}_\Gamma ,\Gamma )\).
 
Literatur
1.
Zurück zum Zitat Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRef Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRef
2.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRef Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRef
3.
Zurück zum Zitat Piegl L, Tiller W (1987) Curve and surface constructions using rational B-splines. Comput-Aided Design 19(9):485–498CrossRef Piegl L, Tiller W (1987) Curve and surface constructions using rational B-splines. Comput-Aided Design 19(9):485–498CrossRef
4.
Zurück zum Zitat Schumaker LL (2007) Spline functions: basic theory (English). Cambridge mathematical library. Cambridge University Press, Cambridge Schumaker LL (2007) Spline functions: basic theory (English). Cambridge mathematical library. Cambridge University Press, Cambridge
5.
Zurück zum Zitat Buffa A, Dölz J, Kurz S, Schöps S, Vázquez R, Wolf F (2020) Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. Numerische Mathematik 144:201–236MathSciNetCrossRef Buffa A, Dölz J, Kurz S, Schöps S, Vázquez R, Wolf F (2020) Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis. Numerische Mathematik 144:201–236MathSciNetCrossRef
6.
Zurück zum Zitat Dölz J, Kurz S, Schöps S, Wolf F (2019) Isogeometric boundary elements in electromagnetism: rigorous analysis, fast methods, and examples. SIAM J Sci Comput 41(5):B983–B1010MathSciNetCrossRef Dölz J, Kurz S, Schöps S, Wolf F (2019) Isogeometric boundary elements in electromagnetism: rigorous analysis, fast methods, and examples. SIAM J Sci Comput 41(5):B983–B1010MathSciNetCrossRef
7.
Zurück zum Zitat Beirão da Veiga L, Buffa A, Sangalli G, Vázquez R (2014) Mathematical analysis of variational isogeometric methods. Acta Numer 23:157–287MathSciNetCrossRef Beirão da Veiga L, Buffa A, Sangalli G, Vázquez R (2014) Mathematical analysis of variational isogeometric methods. Acta Numer 23:157–287MathSciNetCrossRef
8.
Zurück zum Zitat Buffa A, Vázquez RH, Sangalli G, da Veiga LB (2015) Approximation estimates for isogeometric spaces in multipatch geometries. Numer Methods Partial Diff Equ 31(2):422–438MathSciNetCrossRef Buffa A, Vázquez RH, Sangalli G, da Veiga LB (2015) Approximation estimates for isogeometric spaces in multipatch geometries. Numer Methods Partial Diff Equ 31(2):422–438MathSciNetCrossRef
9.
10.
Zurück zum Zitat Buffa A, Rivas J, Sangalli G, Vázquez R (2011) Isogeometric discrete differential forms in three dimensions. SIAM J Numer Anal 49(2):818–844MathSciNetCrossRef Buffa A, Rivas J, Sangalli G, Vázquez R (2011) Isogeometric discrete differential forms in three dimensions. SIAM J Numer Anal 49(2):818–844MathSciNetCrossRef
11.
Zurück zum Zitat Peterson AF, Aberegg KR (1995) Parametric mapping of vector basis functions for surface integral equation formulations. Appl Comput Electromag Soc J 10:107–115 Peterson AF, Aberegg KR (1995) Parametric mapping of vector basis functions for surface integral equation formulations. Appl Comput Electromag Soc J 10:107–115
12.
Zurück zum Zitat Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic, San DiegoMATH Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic, San DiegoMATH
13.
Zurück zum Zitat Kurz S, Rain O, Rjasanow S (2002) The adaptive cross-approximation technique for the 3D boundary-element method. IEEE Trans Magn 38(2):421–424CrossRef Kurz S, Rain O, Rjasanow S (2002) The adaptive cross-approximation technique for the 3D boundary-element method. IEEE Trans Magn 38(2):421–424CrossRef
14.
Zurück zum Zitat Peterson AF (2006) Mapped vector basis functions for electromagnetic integral equations. Synth Lect Comput Electromagn 1(1):1–124CrossRef Peterson AF (2006) Mapped vector basis functions for electromagnetic integral equations. Synth Lect Comput Electromagn 1(1):1–124CrossRef
15.
Zurück zum Zitat Monk P (2003) Finite element methods for Maxwell’s equations. Oxford University Press, OxfordCrossRef Monk P (2003) Finite element methods for Maxwell’s equations. Oxford University Press, OxfordCrossRef
16.
Zurück zum Zitat Payne L, Weinberger H (1960) An optimal Poincaré inequality for convex domains. Arch Rat Mech Anal 5:286–292CrossRef Payne L, Weinberger H (1960) An optimal Poincaré inequality for convex domains. Arch Rat Mech Anal 5:286–292CrossRef
17.
Zurück zum Zitat Roustant O, Barthe F, Iooss B (2017) Poincaré inequalities on intervals - application to sensitivity analysis. Electr J Stat 11(2):3081–3119 Roustant O, Barthe F, Iooss B (2017) Poincaré inequalities on intervals - application to sensitivity analysis. Electr J Stat 11(2):3081–3119
18.
Zurück zum Zitat Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, vol 15, 3rd edn. Texts in applied mathematics. Springer, New York Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, vol 15, 3rd edn. Texts in applied mathematics. Springer, New York
19.
Zurück zum Zitat Dölz J, Harbrecht H, Kurz S, Schöps S, Wolf F (2018) A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. Comput Methods Appl Mech Eng 330(Supplement C):83–101 Dölz J, Harbrecht H, Kurz S, Schöps S, Wolf F (2018) A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems. Comput Methods Appl Mech Eng 330(Supplement C):83–101
20.
Zurück zum Zitat Adams RA (1978) Sobolev spaces. Pure and applied mathematics. Academic, New York Adams RA (1978) Sobolev spaces. Pure and applied mathematics. Academic, New York
21.
Zurück zum Zitat Sauter SA, Schwab C (2011) Boundary element methods. Springer, BerlinCrossRef Sauter SA, Schwab C (2011) Boundary element methods. Springer, BerlinCrossRef
22.
Zurück zum Zitat Buffa A, Christiansen S (2003) The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numerische Mathematik 94(2):229–267MathSciNetCrossRef Buffa A, Christiansen S (2003) The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numerische Mathematik 94(2):229–267MathSciNetCrossRef
23.
Zurück zum Zitat Buffa A, Hiptmair R (2003) Galerkin boundary element methods for electromagnetic scattering. In: Ainsworth M, Davies P, Duncan D, Rynne B, Martin P (eds) Topics in computational wave propagation. Springer, Berlin, pp 83–124CrossRef Buffa A, Hiptmair R (2003) Galerkin boundary element methods for electromagnetic scattering. In: Ainsworth M, Davies P, Duncan D, Rynne B, Martin P (eds) Topics in computational wave propagation. Springer, Berlin, pp 83–124CrossRef
24.
Zurück zum Zitat Girault V, Raviart P-A (1986) Finite element methods for Navier-Stokes equations: theory and algorithms, 1st edn. Springer, BerlinCrossRef Girault V, Raviart P-A (1986) Finite element methods for Navier-Stokes equations: theory and algorithms, 1st edn. Springer, BerlinCrossRef
25.
Zurück zum Zitat McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, CambridgeMATH McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, CambridgeMATH
26.
Zurück zum Zitat Boffi D, Brezzi F, Fortin M (2013) Mixed finite element methods and applications. Springer, BerlinCrossRef Boffi D, Brezzi F, Fortin M (2013) Mixed finite element methods and applications. Springer, BerlinCrossRef
27.
Zurück zum Zitat Costabel M, Dauge M, Demkowicz L (2008) Polynomial extension operators for H1, H(curl) and H(div)-spaces on a cube. Math Comput 1967–1999 Costabel M, Dauge M, Demkowicz L (2008) Polynomial extension operators for H1, H(curl) and H(div)-spaces on a cube. Math Comput 1967–1999
28.
Zurück zum Zitat Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations, Numerical mathematics and scientific computation. Oxford University Press, Oxford Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations, Numerical mathematics and scientific computation. Oxford University Press, Oxford
29.
Zurück zum Zitat Xu J, Zikatanov L (2002) Some observations on Babuška and Brezzi theories. Numerische Mathematik 94(1):195–202CrossRef Xu J, Zikatanov L (2002) Some observations on Babuška and Brezzi theories. Numerische Mathematik 94(1):195–202CrossRef
30.
Zurück zum Zitat Bespalov A, Heuer N, Hiptmair R (2010) Convergence of the natural hp-BEM for the electric field integral equation on polyhedral surfaces. SIAM J Numer Anal 48:1518–1529MathSciNetCrossRef Bespalov A, Heuer N, Hiptmair R (2010) Convergence of the natural hp-BEM for the electric field integral equation on polyhedral surfaces. SIAM J Numer Anal 48:1518–1529MathSciNetCrossRef
32.
Zurück zum Zitat Zaglmayr S (2006) High order finite element methods for electromagnetic field computation. Dissertation. Johannes Kepler Universität, Linz, Austria Zaglmayr S (2006) High order finite element methods for electromagnetic field computation. Dissertation. Johannes Kepler Universität, Linz, Austria
34.
Zurück zum Zitat Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkMATH Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkMATH
Metadaten
Titel
Isogeometric Boundary Elements
verfasst von
Dr. Felix Wolf
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-61939-8_3

Neuer Inhalt