Skip to main content

2016 | OriginalPaper | Buchkapitel

Joint Face Alignment and 3D Face Reconstruction

verfasst von : Feng Liu, Dan Zeng, Qijun Zhao, Xiaoming Liu

Erschienen in: Computer Vision – ECCV 2016

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an approach to simultaneously solve the two problems of face alignment and 3D face reconstruction from an input 2D face image of arbitrary poses and expressions. The proposed method iteratively and alternately applies two sets of cascaded regressors, one for updating 2D landmarks and the other for updating reconstructed pose-expression-normalized (PEN) 3D face shape. The 3D face shape and the landmarks are correlated via a 3D-to-2D mapping matrix. In each iteration, adjustment to the landmarks is firstly estimated via a landmark regressor, and this landmark adjustment is also used to estimate 3D face shape adjustment via a shape regressor. The 3D-to-2D mapping is then computed based on the adjusted 3D face shape and 2D landmarks, and it further refines the 2D landmarks. An effective algorithm is devised to learn these regressors based on a training dataset of pairing annotated 3D face shapes and 2D face images. Compared with existing methods, the proposed method can fully automatically generate PEN 3D face shapes in real time from a single 2D face image and locate both visible and invisible 2D landmarks. Extensive experiments show that the proposed method can achieve the state-of-the-art accuracy in both face alignment and 3D face reconstruction, and benefit face recognition owing to its reconstructed PEN 3D face shapes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Asthana, A., Zafeiriou, S., Tzimiropoulos, G., Cheng, S., Pantic, M.: From pixels to response maps: discriminative image filtering for face alignment in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1312–1320 (2015)CrossRef Asthana, A., Zafeiriou, S., Tzimiropoulos, G., Cheng, S., Pantic, M.: From pixels to response maps: discriminative image filtering for face alignment in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1312–1320 (2015)CrossRef
2.
Zurück zum Zitat Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH, pp. 187–194. ACM Press/Addison-Wesley Publishing Co. (1999) Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH, pp. 187–194. ACM Press/Addison-Wesley Publishing Co. (1999)
3.
Zurück zum Zitat Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)CrossRef Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)CrossRef
4.
Zurück zum Zitat Cao, C., Weng, Y., Lin, S., Zhou, K.: 3D shape regression for real-time facial animation. Trans. Graph. (TOG) 32(4), 41 (2013)MATH Cao, C., Weng, Y., Lin, S., Zhou, K.: 3D shape regression for real-time facial animation. Trans. Graph. (TOG) 32(4), 41 (2013)MATH
5.
Zurück zum Zitat Cao, C., Wu, H., Weng, Y., Shao, T., Zhou, K.: Real-time facial animation with image-based dynamic avatars. ACM Trans. Graph. (TOG) 35(4), 126 (2016)CrossRef Cao, C., Wu, H., Weng, Y., Shao, T., Zhou, K.: Real-time facial animation with image-based dynamic avatars. ACM Trans. Graph. (TOG) 35(4), 126 (2016)CrossRef
6.
Zurück zum Zitat Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vision 107(2), 177–190 (2014)MathSciNetCrossRef Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vision 107(2), 177–190 (2014)MathSciNetCrossRef
7.
Zurück zum Zitat Chu, B., Romdhani, S., Chen, L.: 3D-aided face recognition robust to expression and pose variations. In: CVPR, pp. 1907–1914. IEEE (2014) Chu, B., Romdhani, S., Chen, L.: 3D-aided face recognition robust to expression and pose variations. In: CVPR, pp. 1907–1914. IEEE (2014)
8.
Zurück zum Zitat Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 6, 681–685 (2001)CrossRef Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 6, 681–685 (2001)CrossRef
9.
Zurück zum Zitat Cootes, T.F., Lanitis, A.: Active shape models: evaluation of a multi-resolution method for improving image search. In: BMVC, pp. 327–338. Citeseer (1994) Cootes, T.F., Lanitis, A.: Active shape models: evaluation of a multi-resolution method for improving image search. In: BMVC, pp. 327–338. Citeseer (1994)
10.
Zurück zum Zitat Cristinacce, D., Cootes, T.: Automatic feature localisation with constrained local models. Pattern Recogn. 41(10), 3054–3067 (2008)CrossRefMATH Cristinacce, D., Cootes, T.: Automatic feature localisation with constrained local models. Pattern Recogn. 41(10), 3054–3067 (2008)CrossRefMATH
11.
Zurück zum Zitat Cristinacce, D., Cootes, T.F.: Boosted regression active shape models. In: BMVC, pp. 1–10 (2007) Cristinacce, D., Cootes, T.F.: Boosted regression active shape models. In: BMVC, pp. 1–10 (2007)
12.
Zurück zum Zitat Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., Slama, R.: 3D face recognition under expressions, occlusions, and pose variations. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2270–2283 (2013)CrossRef Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., Slama, R.: 3D face recognition under expressions, occlusions, and pose variations. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2270–2283 (2013)CrossRef
13.
Zurück zum Zitat Gong, X., Wang, G.: An automatic approach for pixel-wise correspondence between 3D faces. Hybrid Inf. Technol. 2, 198–205 (2006) Gong, X., Wang, G.: An automatic approach for pixel-wise correspondence between 3D faces. Hybrid Inf. Technol. 2, 198–205 (2006)
14.
Zurück zum Zitat Han, H., Jain, A.K.: 3D face texture modeling from uncalibrated frontal and profile images. In: BTAS, pp. 223–230. IEEE (2012) Han, H., Jain, A.K.: 3D face texture modeling from uncalibrated frontal and profile images. In: BTAS, pp. 223–230. IEEE (2012)
15.
Zurück zum Zitat Hassner, T.: Viewing real-world faces in 3D. In: ICCV, pp. 3607–3614 (2013) Hassner, T.: Viewing real-world faces in 3D. In: ICCV, pp. 3607–3614 (2013)
16.
Zurück zum Zitat Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst (2007) Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst (2007)
17.
Zurück zum Zitat Jeni, L.A., Cohn, J.F., Kanade, T.: Dense 3D face alignment from 2D videos in real-time. In: FG. IEEE (2015) Jeni, L.A., Cohn, J.F., Kanade, T.: Dense 3D face alignment from 2D videos in real-time. In: FG. IEEE (2015)
18.
Zurück zum Zitat Jourabloo, A., Liu, X.: Pose-invariant 3D face alignment. In: ICCV, pp. 3694–3702 (2015) Jourabloo, A., Liu, X.: Pose-invariant 3D face alignment. In: ICCV, pp. 3694–3702 (2015)
19.
Zurück zum Zitat Jourabloo, A., Liu, X.: Large-pose face alignment via CNN-based dense 3D model fitting. In: CVPR, June 2016 Jourabloo, A., Liu, X.: Large-pose face alignment via CNN-based dense 3D model fitting. In: CVPR, June 2016
20.
Zurück zum Zitat Kemelmacher-Shlizerman, I., Basri, R.: 3D face reconstruction from a single image using a single reference face shape. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 394–405 (2011)CrossRef Kemelmacher-Shlizerman, I., Basri, R.: 3D face reconstruction from a single image using a single reference face shape. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 394–405 (2011)CrossRef
21.
Zurück zum Zitat Lee, D., Park, H., Yoo, C.D.: Face alignment using cascade Gaussian process regression trees. In: CVPR, pp. 4204–4212. IEEE (2015) Lee, D., Park, H., Yoo, C.D.: Face alignment using cascade Gaussian process regression trees. In: CVPR, pp. 4204–4212. IEEE (2015)
22.
Zurück zum Zitat Lee, Y.J., Lee, S.J., Park, K.R., Jo, J., Kim, J.: Single view-based 3D face reconstruction robust to self-occlusion. EURASIP J. Adv. Sig. Process. 2012(1), 1–20 (2012)CrossRef Lee, Y.J., Lee, S.J., Park, K.R., Jo, J., Kim, J.: Single view-based 3D face reconstruction robust to self-occlusion. EURASIP J. Adv. Sig. Process. 2012(1), 1–20 (2012)CrossRef
23.
Zurück zum Zitat Liu, F., Zeng, D., Li, J., Zhao, Q.: Cascaded regressor based 3D face reconstruction from a single arbitrary view image. arXiv preprint arXiv:1509.06161 (2015) Liu, F., Zeng, D., Li, J., Zhao, Q.: Cascaded regressor based 3D face reconstruction from a single arbitrary view image. arXiv preprint arXiv:​1509.​06161 (2015)
24.
Zurück zum Zitat Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRef Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRef
25.
Zurück zum Zitat Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vision 60(2), 135–164 (2004)CrossRef Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vision 60(2), 135–164 (2004)CrossRef
26.
Zurück zum Zitat Qu, C., Monari, E., Schuchert, T., Beyerer, J.: Fast, robust and automatic 3D face model reconstruction from videos. In: AVSS, pp. 113–118. IEEE (2014) Qu, C., Monari, E., Schuchert, T., Beyerer, J.: Fast, robust and automatic 3D face model reconstruction from videos. In: AVSS, pp. 113–118. IEEE (2014)
27.
Zurück zum Zitat Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 FPS via regressing local binary features. In: CVPR, pp. 1685–1692. IEEE (2014) Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 FPS via regressing local binary features. In: CVPR, pp. 1685–1692. IEEE (2014)
28.
Zurück zum Zitat Romdhani, S., Vetter, T.: Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: CVPR, pp. 986–993. IEEE (2005) Romdhani, S., Vetter, T.: Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: CVPR, pp. 986–993. IEEE (2005)
29.
Zurück zum Zitat Roth, J., Tong, Y., Liu, X.: Adaptive 3D face reconstruction from unconstrained photo collections. In: CVPR, June 2016 Roth, J., Tong, Y., Liu, X.: Adaptive 3D face reconstruction from unconstrained photo collections. In: CVPR, June 2016
30.
Zurück zum Zitat Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: ICCVW, pp. 397–403. IEEE (2013) Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: ICCVW, pp. 397–403. IEEE (2013)
31.
Zurück zum Zitat Suwajanakorn, S., Kemelmacher-Shlizerman, I., Seitz, S.M.: Total moving face reconstruction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 796–812. Springer, Heidelberg (2014) Suwajanakorn, S., Kemelmacher-Shlizerman, I., Seitz, S.M.: Total moving face reconstruction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 796–812. Springer, Heidelberg (2014)
32.
Zurück zum Zitat Suwajanakorn, S., Seitz, S.M., Kemelmacher-Shlizerman, I.: What makes tom hanks look like tom hanks. In: ICCV, pp. 3952–3960 (2015) Suwajanakorn, S., Seitz, S.M., Kemelmacher-Shlizerman, I.: What makes tom hanks look like tom hanks. In: ICCV, pp. 3952–3960 (2015)
33.
Zurück zum Zitat Tulyakov, S., Sebe, N.: Regressing a 3D face shape from a single image. In: ICCV, pp. 3748–3755. IEEE (2015) Tulyakov, S., Sebe, N.: Regressing a 3D face shape from a single image. In: ICCV, pp. 3748–3755. IEEE (2015)
34.
Zurück zum Zitat Tzimiropoulos, G.: Project-out cascaded regression with an application to face alignment. In: CVPR, pp. 3659–3667. IEEE (2015) Tzimiropoulos, G.: Project-out cascaded regression with an application to face alignment. In: CVPR, pp. 3659–3667. IEEE (2015)
35.
Zurück zum Zitat Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: CVPR, pp. 532–539. IEEE (2013) Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: CVPR, pp. 532–539. IEEE (2013)
36.
Zurück zum Zitat Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: FG, pp. 211–216. IEEE (2006) Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: FG, pp. 211–216. IEEE (2006)
37.
Zurück zum Zitat Yu, X., Huang, J., Zhang, S., Yan, W., Metaxas, D.N.: Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model. In: ICCV, pp. 1944–1951. IEEE (2013) Yu, X., Huang, J., Zhang, S., Yan, W., Metaxas, D.N.: Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model. In: ICCV, pp. 1944–1951. IEEE (2013)
38.
Zurück zum Zitat Zhou, X., Leonardos, S., Hu, X., Daniilidis, K.: 3D shape estimation from 2D landmarks: a convex relaxation approach. In: CVPR, pp. 4447–4455. IEEE (2015) Zhou, X., Leonardos, S., Hu, X., Daniilidis, K.: 3D shape estimation from 2D landmarks: a convex relaxation approach. In: CVPR, pp. 4447–4455. IEEE (2015)
39.
Zurück zum Zitat Zhu, S., Li, C., Loy, C.C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: CVPR, pp. 4998–5006 (2015) Zhu, S., Li, C., Loy, C.C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: CVPR, pp. 4998–5006 (2015)
40.
Zurück zum Zitat Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR, pp. 2879–2886. IEEE (2012) Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR, pp. 2879–2886. IEEE (2012)
41.
Zurück zum Zitat Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: CVPR, June 2016 Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: CVPR, June 2016
42.
Zurück zum Zitat Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High-fidelity pose and expression normalization for face recognition in the wild. In: CVPR, pp. 787–796. IEEE (2015) Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High-fidelity pose and expression normalization for face recognition in the wild. In: CVPR, pp. 787–796. IEEE (2015)
Metadaten
Titel
Joint Face Alignment and 3D Face Reconstruction
verfasst von
Feng Liu
Dan Zeng
Qijun Zhao
Xiaoming Liu
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46454-1_33