Skip to main content
Erschienen in: Polymer Science, Series A 1/2021

19.02.2022 | STRUCTURE AND PROPERTIES

Kinetics of Crystallization Mechanisms in High Density Polyethylene and Isotactic Polypropylene

verfasst von: Muhammad Azeem Arshad

Erschienen in: Polymer Science, Series A | Sonderheft 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports a detailed kinetic investigation on crystallization mechanisms occurring in two familiar industrial polyolefins, high-density polyethylene (HDPE) and isotactic polypropylene (iPP), under isothermal as well as non-isothermal conditions. Kinetic analysis by advanced kinetic approach to polymer crystallization processes suggests that the crystallization of HDPE and iPP goes to completion by following fairly invariable nucleation/diffusion phenomena. Nevertheless, crystallization mechanisms of both HDPE and iPP show dependence on mode of experiment. Under non-isothermal conditions, HDPE follows a crystallization mechanism intermediate between random nucleation followed by isotropic one-dimensional (1D) growth of spherulites and two-dimensional (2D) growth of spherulites. Under isothermal conditions, it predominantly follows 2D growth of spherulites. On the other hand, while iPP follows a crystallization mechanism analogous to HDPE under non-isothermal conditions, it pursues three-(3D) dimensional growth of spherulites under isothermal conditions. In general, pre-exponential factor remains independent of temperature in all the crystallization cases studied. Moreover, polymeric chains of HDPE demonstrate relatively slower transport rate when compared with iPP. The obtained kinetic parameters are interpreted in terms of their probable physical meanings and practical worth of the present study is taken into account and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. J. Flory, Principles of Polymer Chemistry, 16th ed. (Cornell Univ. Press, New York, 1995). P. J. Flory, Principles of Polymer Chemistry, 16th ed. (Cornell Univ. Press, New York, 1995).
2.
Zurück zum Zitat C. Vasile and G. E. Zaikov, New Trends in Natural and Synthetic Polymer Science (Nova Sci. Publ., New York, 2006). C. Vasile and G. E. Zaikov, New Trends in Natural and Synthetic Polymer Science (Nova Sci. Publ., New York, 2006).
3.
Zurück zum Zitat Encyclopedia of Polymer Applications, Ed. by M. Mishra (Taylor and Francis, London, 2019), Vols. 1‒3. Encyclopedia of Polymer Applications, Ed. by M. Mishra (Taylor and Francis, London, 2019), Vols. 1‒3.
4.
Zurück zum Zitat GlobeNewswire. https://www.globenewswire.com/. Cited August 23, 2021. GlobeNewswire. https://​www.​globenewswire.​com/​.​ Cited August 23, 2021.
5.
Zurück zum Zitat T. Charoonsuk, R. Muanghlua, S. Sriphan, S. Pongampai, and N. Vittayakorn, Sustainable Mater. Technol. 27, e00239 (2021). T. Charoonsuk, R. Muanghlua, S. Sriphan, S. Pongampai, and N. Vittayakorn, Sustainable Mater. Technol. 27, e00239 (2021).
7.
Zurück zum Zitat M. A. Spalding and A. M. Chatterjee, Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and Markets (Wiley, New Jersey, 2017).CrossRef M. A. Spalding and A. M. Chatterjee, Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and Markets (Wiley, New Jersey, 2017).CrossRef
8.
Zurück zum Zitat L. P. da Silva and E. F. Barbosa, Polypropylene: Synthesis, Applications and Environmental Concerns (Nova Sci. Publ., New York, 2013). L. P. da Silva and E. F. Barbosa, Polypropylene: Synthesis, Applications and Environmental Concerns (Nova Sci. Publ., New York, 2013).
9.
Zurück zum Zitat M. Alberghini, S. Hong, L. M. Lozano, V. Korolovych, Y. Huang, F. Signorato, S. H. Zandavi, C. Fucetola, I. Uluturk, M. Y. Tolstorukov, G. Chen, P. Asinari, R. M. Osgood III, M. Fasano, and S. V. Boriskina, Nat. Sustainability 4, 715 (2021).CrossRef M. Alberghini, S. Hong, L. M. Lozano, V. Korolovych, Y. Huang, F. Signorato, S. H. Zandavi, C. Fucetola, I. Uluturk, M. Y. Tolstorukov, G. Chen, P. Asinari, R. M. Osgood III, M. Fasano, and S. V. Boriskina, Nat. Sustainability 4, 715 (2021).CrossRef
10.
Zurück zum Zitat R. E. Harmon, G. SriBala, L. J. Broadbelt, and A. K. Burnham, Energy Fuels 35, 6765 (2021).CrossRef R. E. Harmon, G. SriBala, L. J. Broadbelt, and A. K. Burnham, Energy Fuels 35, 6765 (2021).CrossRef
11.
Zurück zum Zitat X. Jia, C. Qin, T. Friedberger, Z. Guan, and Z. Huang, Sci. Adv. 2, e1501591 (2016). X. Jia, C. Qin, T. Friedberger, Z. Guan, and Z. Huang, Sci. Adv. 2, e1501591 (2016).
12.
Zurück zum Zitat N. H. Zulkernain, P. Gani, N. C. Chuan, and T. Uvarajan, Constr. Build. Mater. 296, 123669 (2021). N. H. Zulkernain, P. Gani, N. C. Chuan, and T. Uvarajan, Constr. Build. Mater. 296, 123669 (2021).
13.
Zurück zum Zitat J. Saleem, P. Gao, J. Barford, and G. McKay, J. Mater. Chem. A 1, 14335 (2013).CrossRef J. Saleem, P. Gao, J. Barford, and G. McKay, J. Mater. Chem. A 1, 14335 (2013).CrossRef
14.
Zurück zum Zitat O. A. Alo, I. O. Otunniyi, H. Pienaar, and E. R. Sadiku, Mater. Today: Proc. 38, 658 (2021). O. A. Alo, I. O. Otunniyi, H. Pienaar, and E. R. Sadiku, Mater. Today: Proc. 38, 658 (2021).
15.
Zurück zum Zitat J.-Y. Lin, W.-Y. Wang, and S.-W. Chou, J. Power Sources 282, 348 (2015).CrossRef J.-Y. Lin, W.-Y. Wang, and S.-W. Chou, J. Power Sources 282, 348 (2015).CrossRef
16.
17.
Zurück zum Zitat M. Aghelinejad and S. N. Leung, J. App. Polym. Sci. 134, 45073 (2017). M. Aghelinejad and S. N. Leung, J. App. Polym. Sci. 134, 45073 (2017).
18.
Zurück zum Zitat A. J. Paleo, E. M. F. Vieira, K. Wan, O.Bondarchuk, M. F. Cerqueira, L. M. Goncalves, E. Bilotti, P. Alpuim, and A. M. Rocha, Carbon 150, 408 (2019).CrossRef A. J. Paleo, E. M. F. Vieira, K. Wan, O.Bondarchuk, M. F. Cerqueira, L. M. Goncalves, E. Bilotti, P. Alpuim, and A. M. Rocha, Carbon 150, 408 (2019).CrossRef
19.
Zurück zum Zitat F. Gao, K. Zhang, Y. Guo, J. Xu, and M. Szafran, Prog. Mater. Sci. 121, 100813 (2021). F. Gao, K. Zhang, Y. Guo, J. Xu, and M. Szafran, Prog. Mater. Sci. 121, 100813 (2021).
20.
Zurück zum Zitat G. Zhang, D. Brannum, D. Dong, L. Tang, E. Allahyarov, S. Tang, K. Kodweis, J.-K. Lee, and L. Zhu, Chem. Mater. 28, 4646 (2016).CrossRef G. Zhang, D. Brannum, D. Dong, L. Tang, E. Allahyarov, S. Tang, K. Kodweis, J.-K. Lee, and L. Zhu, Chem. Mater. 28, 4646 (2016).CrossRef
21.
Zurück zum Zitat C. Zhu, Y. Chen, R. Cong, F. Ran, and G. Fang, Sol. Energy Mater. Sol. Cells 219, 110782 (2021). C. Zhu, Y. Chen, R. Cong, F. Ran, and G. Fang, Sol. Energy Mater. Sol. Cells 219, 110782 (2021).
22.
Zurück zum Zitat L. A. Fredin, Z. Li, M. T. Lanagan, M. A. Ratner, and T. J. Marks, Adv. Funct. Mater. 23, 3560 (2013).CrossRef L. A. Fredin, Z. Li, M. T. Lanagan, M. A. Ratner, and T. J. Marks, Adv. Funct. Mater. 23, 3560 (2013).CrossRef
23.
24.
Zurück zum Zitat M. M. Motsa, B. B. Mamba, J. M. Thwala, and T. A. M. Msagati, J. Colloid Interface Sci. 359, 210 (2011).PubMedCrossRef M. M. Motsa, B. B. Mamba, J. M. Thwala, and T. A. M. Msagati, J. Colloid Interface Sci. 359, 210 (2011).PubMedCrossRef
25.
Zurück zum Zitat Y. Wu, C. Dong, C. Yuan, X. Bai, L. Zhang, and Y. Tian, Wear 477, 203776 (2021). Y. Wu, C. Dong, C. Yuan, X. Bai, L. Zhang, and Y. Tian, Wear 477, 203776 (2021).
26.
Zurück zum Zitat M. Naffakh, A. M. Díez-Pascual, C. Marco, and G. Ellis, Mater. Chem. Phys. 144, 98 (2014).CrossRef M. Naffakh, A. M. Díez-Pascual, C. Marco, and G. Ellis, Mater. Chem. Phys. 144, 98 (2014).CrossRef
27.
Zurück zum Zitat A. Gopanna, K. P. Rajan, S. P. Thomas, and M. Chavali, “Polyethylene and Polypropylene Matrix Composites for Biomedical Applications,” in Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers, Ed. by V. Grumezescu and A. Grumezescu (Elsevier, Amsterdam, 2019), pp. 175‒214. A. Gopanna, K. P. Rajan, S. P. Thomas, and M. Chavali, “Polyethylene and Polypropylene Matrix Composites for Biomedical Applications,” in Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers, Ed. by V. Grumezescu and A. Grumezescu (Elsevier, Amsterdam, 2019), pp. 175‒214.
28.
Zurück zum Zitat Y. Lin, E. Bilotti, C. W. M. Bastiaansen, and T. Peijs, Polym. Eng. Sci. 60, 2351 (2020).CrossRef Y. Lin, E. Bilotti, C. W. M. Bastiaansen, and T. Peijs, Polym. Eng. Sci. 60, 2351 (2020).CrossRef
29.
Zurück zum Zitat Z. Fei, F. D. Eisner, X. Jiao, M. Azzouzi, J. A. Röhr, Y. Han, M. Shahid, A. S. R. Chesman, C. D. Easton, C. R. McNeill, T. D. Anthopoulos, J. Nelson, and M. Heeney, Adv. Mater. 30, 1705209 (2018). Z. Fei, F. D. Eisner, X. Jiao, M. Azzouzi, J. A. Röhr, Y. Han, M. Shahid, A. S. R. Chesman, C. D. Easton, C. R. McNeill, T. D. Anthopoulos, J. Nelson, and M. Heeney, Adv. Mater. 30, 1705209 (2018).
30.
Zurück zum Zitat F. Navarro-Pardo, G. Martínez-Barrera, A. L. Martínez-Hernández, V. M. Castaño, J. L. Rivera-Armenta, F. Medellín-Rodríguez, and C. Velasco-Santos, Materials 6, 3494 (2013).PubMedPubMedCentralCrossRef F. Navarro-Pardo, G. Martínez-Barrera, A. L. Martínez-Hernández, V. M. Castaño, J. L. Rivera-Armenta, F. Medellín-Rodríguez, and C. Velasco-Santos, Materials 6, 3494 (2013).PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat L. Suryanegara, A. N. Nakagaito, and H. Yano, Compos. Sci. Technol. 69, 1187 (2009).CrossRef L. Suryanegara, A. N. Nakagaito, and H. Yano, Compos. Sci. Technol. 69, 1187 (2009).CrossRef
32.
33.
Zurück zum Zitat E. Tarani, A. Wurm, C. Schick, D. N. Bikiaris, K. Chrissafis, and G. Vourlias, Thermochim. Acta 643, 94 (2016).CrossRef E. Tarani, A. Wurm, C. Schick, D. N. Bikiaris, K. Chrissafis, and G. Vourlias, Thermochim. Acta 643, 94 (2016).CrossRef
34.
Zurück zum Zitat M. Abareshi, S. M. Zebarjad, and E. K. Goharshadi, Bull. Mater. Sci. 37, 1113 (2014).CrossRef M. Abareshi, S. M. Zebarjad, and E. K. Goharshadi, Bull. Mater. Sci. 37, 1113 (2014).CrossRef
35.
Zurück zum Zitat P. Zou, S. Tang, Z. Fu, and H. Xiong, Int. J. Therm. Sci. 48, 837 (2009).CrossRef P. Zou, S. Tang, Z. Fu, and H. Xiong, Int. J. Therm. Sci. 48, 837 (2009).CrossRef
36.
Zurück zum Zitat H. Shan and G. C. Lickfield, Int. J. Polym. Anal. Charact. 12, 327 (2007).CrossRef H. Shan and G. C. Lickfield, Int. J. Polym. Anal. Charact. 12, 327 (2007).CrossRef
37.
Zurück zum Zitat R. Ou, Y. Xie, C. Guo, and Q Wang, J. Appl. Polym. Sci. 126, E2 (2012). R. Ou, Y. Xie, C. Guo, and Q Wang, J. Appl. Polym. Sci. 126, E2 (2012).
38.
Zurück zum Zitat A. Layachi, A. Makhlouf, D. Frihi, H. Satha, A. Belaadi, and R. Seguela, J. Therm. Anal. Calorim. 138, 1081 (2019).CrossRef A. Layachi, A. Makhlouf, D. Frihi, H. Satha, A. Belaadi, and R. Seguela, J. Therm. Anal. Calorim. 138, 1081 (2019).CrossRef
40.
Zurück zum Zitat A. K. Ahmed, M. Atiqullah, D. R. Pradhan, and M. A. AlHarthi, RSC Adv. 7, 42491 (2017).CrossRef A. K. Ahmed, M. Atiqullah, D. R. Pradhan, and M. A. AlHarthi, RSC Adv. 7, 42491 (2017).CrossRef
41.
Zurück zum Zitat J. Li, C. Zhou, G. Wang, Y. Tao, Q. Liu, and Y. Li, Polym. Test. 21, 583 (2002).CrossRef J. Li, C. Zhou, G. Wang, Y. Tao, Q. Liu, and Y. Li, Polym. Test. 21, 583 (2002).CrossRef
43.
Zurück zum Zitat L. Raka, A. Sorrentino, and G. Bogoeva-Gaceva, J. Polym. Sci., Part B: Polym. Phys. 48, 1927 (2010).CrossRef L. Raka, A. Sorrentino, and G. Bogoeva-Gaceva, J. Polym. Sci., Part B: Polym. Phys. 48, 1927 (2010).CrossRef
45.
Zurück zum Zitat S. Vyazovkin, A. K. Burnham, J. M. Craido, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, Thermochim. Acta 520, 1 (2011).CrossRef S. Vyazovkin, A. K. Burnham, J. M. Craido, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, Thermochim. Acta 520, 1 (2011).CrossRef
46.
47.
48.
Zurück zum Zitat M. A. Arshad and A. Maaroufi, Rev. Adv. Mater. Sci. 51, 177 (2017). M. A. Arshad and A. Maaroufi, Rev. Adv. Mater. Sci. 51, 177 (2017).
49.
Zurück zum Zitat S. Vyazovkin, Polym. Cryst. 1, e10003 (2018). S. Vyazovkin, Polym. Cryst. 1, e10003 (2018).
50.
Zurück zum Zitat J. D. Hoffman, J. J. Weeks, and W. M. Murphy, J. Res. Natl. Bur. Stand., Part A 63, 67 (1959). J. D. Hoffman, J. J. Weeks, and W. M. Murphy, J. Res. Natl. Bur. Stand., Part A 63, 67 (1959).
51.
Zurück zum Zitat J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, “The Rate of Crystallization of Linear Polymers with Chain Folding,” in Treatise on Solid State Chemistry, Ed. by N. B. Hannay (Plenum Press, New York, 1976), Vol. 3, p. 497. J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, “The Rate of Crystallization of Linear Polymers with Chain Folding,” in Treatise on Solid State Chemistry, Ed. by N. B. Hannay (Plenum Press, New York, 1976), Vol. 3, p. 497.
54.
Zurück zum Zitat N. Guigo, J. V. Berkel, E. D. Jong, and N. Sbirrazzuoli, Thermochim. Acta 650, 66 (2017).CrossRef N. Guigo, J. V. Berkel, E. D. Jong, and N. Sbirrazzuoli, Thermochim. Acta 650, 66 (2017).CrossRef
55.
Zurück zum Zitat S. Vyazovkin, K. Chrissafis, M. L. D. Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Suñol, Thermochim. Acta 590, 1 (2014).CrossRef S. Vyazovkin, K. Chrissafis, M. L. D. Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Suñol, Thermochim. Acta 590, 1 (2014).CrossRef
56.
Zurück zum Zitat M. A. Arshad, Fullerenes, Nanotubes, Carbon Nanostruct. 28, 857 (2020).CrossRef M. A. Arshad, Fullerenes, Nanotubes, Carbon Nanostruct. 28, 857 (2020).CrossRef
57.
58.
59.
Zurück zum Zitat S. H. El-Taweel and M. Abboudi, J. App. Polym. Sci. 137, 48340 (2020). S. H. El-Taweel and M. Abboudi, J. App. Polym. Sci. 137, 48340 (2020).
Metadaten
Titel
Kinetics of Crystallization Mechanisms in High Density Polyethylene and Isotactic Polypropylene
verfasst von
Muhammad Azeem Arshad
Publikationsdatum
19.02.2022
Verlag
Pleiades Publishing
Erschienen in
Polymer Science, Series A / Ausgabe Sonderheft 1/2021
Print ISSN: 0965-545X
Elektronische ISSN: 1555-6107
DOI
https://doi.org/10.1134/S0965545X22030014

Weitere Artikel der Sonderheft 1/2021

Polymer Science, Series A 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.