Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Laser Scanning Systems in Landslide Studies

verfasst von : Biswajeet Pradhan, Maher Ibrahim Sameen

Erschienen in: Laser Scanning Applications in Landslide Assessment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Remote sensing techniques have undergone rapid and significant improvements in the last few decades. The capability of new and enhanced remote sensing techniques to acquire 3D spatial data and very high-resolution terrain contours allows advanced and effective investigations of landslide phenomena. Data from multi-sensors supplemented with airborne- and ground-based data collection techniques

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39(1), 80–97. Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39(1), 80–97.
Zurück zum Zitat Akgun, A., & Erkan, O. (2016). Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: In an artificial reservoir area at Northern Turkey. Arabian Journal of Geosciences, 9(2), 1–15.CrossRef Akgun, A., & Erkan, O. (2016). Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: In an artificial reservoir area at Northern Turkey. Arabian Journal of Geosciences, 9(2), 1–15.CrossRef
Zurück zum Zitat Al-Durgham, M., Fotopoulos, G., & Glennie, C. (2010). On the accuracy of Li-DAR derived digital surface models. Gravity, geoid and earth observation (pp. 689–695). Berlin: Springer.CrossRef Al-Durgham, M., Fotopoulos, G., & Glennie, C. (2010). On the accuracy of Li-DAR derived digital surface models. Gravity, geoid and earth observation (pp. 689–695). Berlin: Springer.CrossRef
Zurück zum Zitat Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., & Reichenbach, P. (2007). Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. Natural Hazards and Earth System Science, 7(6), 637–650.CrossRef Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., & Reichenbach, P. (2007). Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. Natural Hazards and Earth System Science, 7(6), 637–650.CrossRef
Zurück zum Zitat Axelsson, P. (2000). DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing, 33(B4/1; PART 4), 111–118. Axelsson, P. (2000). DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing, 33(B4/1; PART 4), 111–118.
Zurück zum Zitat Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility map-ping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73–81.CrossRef Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility map-ping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73–81.CrossRef
Zurück zum Zitat Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.CrossRef Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.CrossRef
Zurück zum Zitat Barendse, P. E., Brian, M., & Machan, G. (2009). In-place microelectromechanical system inclinometer strings: Evaluation of an evolving technology. In Transportation Research Board 88th Annual Meeting (No. 09-2118). Barendse, P. E., Brian, M., & Machan, G. (2009). In-place microelectromechanical system inclinometer strings: Evaluation of an evolving technology. In Transportation Research Board 88th Annual Meeting (No. 09-2118).
Zurück zum Zitat Baumann, V., Wick, E., Horton, P., & Jaboyedoff, M. (2011, October). Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In Proceedings of the 14th Pan-American conference on soil mechanics and geotechnical engineering (pp. 2–6). Baumann, V., Wick, E., Horton, P., & Jaboyedoff, M. (2011, October). Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In Proceedings of the 14th Pan-American conference on soil mechanics and geotechnical engineering (pp. 2–6).
Zurück zum Zitat Bromhead, E., Curtis, R., & Schofield, W. (1988). Observation and adjustment of a geodetic survey network for measurement of landslide movement. In C. Bonnard & A. A. Balkema (Eds.), Land-slides-Glissements De Terrains, Proceedings of 5th International Symposium on Landslides (pp. 383–386). The Netherlands: Rotterdam. Bromhead, E., Curtis, R., & Schofield, W. (1988). Observation and adjustment of a geodetic survey network for measurement of landslide movement. In C. Bonnard & A. A. Balkema (Eds.), Land-slides-Glissements De Terrains, Proceedings of 5th International Symposium on Landslides (pp. 383–386). The Netherlands: Rotterdam.
Zurück zum Zitat Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.CrossRef Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.CrossRef
Zurück zum Zitat Burghaus, S., Bell, R., & Kuhlmann, H. (2009). Improvement of a terrestric network for movement analysis of a complex landslide. In Presentation at FIG Conference, Eilat, Israel. Burghaus, S., Bell, R., & Kuhlmann, H. (2009). Improvement of a terrestric network for movement analysis of a complex landslide. In Presentation at FIG Conference, Eilat, Israel.
Zurück zum Zitat Burrough, P. A., McDonnell, R. A., McDonnell, R., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford: Oxford University Press. Burrough, P. A., McDonnell, R. A., McDonnell, R., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford: Oxford University Press.
Zurück zum Zitat Canuti, P., Casagli, N., Catani, F., Falorni, G., & Farina, P. (2007). Integration of remote sensing techniques in different stages of landslide response. Progress in Landslide Science (pp. 251–260). Heidelberg: Springer.CrossRef Canuti, P., Casagli, N., Catani, F., Falorni, G., & Farina, P. (2007). Integration of remote sensing techniques in different stages of landslide response. Progress in Landslide Science (pp. 251–260). Heidelberg: Springer.CrossRef
Zurück zum Zitat Chen, X. L., Liu, C. G., Chang, Z. F., & Zhou, Q. (2016). The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology, 253, 547–550.CrossRef Chen, X. L., Liu, C. G., Chang, Z. F., & Zhou, Q. (2016). The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology, 253, 547–550.CrossRef
Zurück zum Zitat Chow, T. E., & Hodgson, M. E. (2009). Effects of LiDAR post-spacing and DEM resolution to mean slope estimation. International Journal of Geographical Information Science, 23(10), 1277–1295.CrossRef Chow, T. E., & Hodgson, M. E. (2009). Effects of LiDAR post-spacing and DEM resolution to mean slope estimation. International Journal of Geographical Information Science, 23(10), 1277–1295.CrossRef
Zurück zum Zitat Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards, 56(3), 881–898.CrossRef Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards, 56(3), 881–898.CrossRef
Zurück zum Zitat Daehne, A., & Corsini, A. (2013). Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data. Earth Surf Process Landforms, 38, 640–654.CrossRef Daehne, A., & Corsini, A. (2013). Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data. Earth Surf Process Landforms, 38, 640–654.CrossRef
Zurück zum Zitat Dallaire, G. (1974). Electronic distance measuring revolution well underway. Civil Engineering, 44(10), 66–71. Dallaire, G. (1974). Electronic distance measuring revolution well underway. Civil Engineering, 44(10), 66–71.
Zurück zum Zitat De Blasio, F. V. (2011). Introduction to the physics of landslides: Lecture notes on the dynamics of mass wasting. Berlin: Springer Science & Business Media.CrossRef De Blasio, F. V. (2011). Introduction to the physics of landslides: Lecture notes on the dynamics of mass wasting. Berlin: Springer Science & Business Media.CrossRef
Zurück zum Zitat Derron, M. H., & Jaboyedoff, M. (2010). Preface “LiDAR and DEM techniques for landslides monitoring and characterization”. Natural Hazards and Earth System Sciences, 10, 1877–1879.CrossRef Derron, M. H., & Jaboyedoff, M. (2010). Preface “LiDAR and DEM techniques for landslides monitoring and characterization”. Natural Hazards and Earth System Sciences, 10, 1877–1879.CrossRef
Zurück zum Zitat Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.CrossRef Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.CrossRef
Zurück zum Zitat Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., et al. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749–1776.CrossRef Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., et al. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749–1776.CrossRef
Zurück zum Zitat Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyer-sons, J., et al. (2007). Use of LiDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32(5), 754–769.CrossRef Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyer-sons, J., et al. (2007). Use of LiDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32(5), 754–769.CrossRef
Zurück zum Zitat Fernandes, N. F., Guimarães, R. F., Gomes, R. A., Vieira, B. C., Montgomery, D. R., & Greenberg, H. (2004). Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling. CATENA, 55(2), 163–181.CrossRef Fernandes, N. F., Guimarães, R. F., Gomes, R. A., Vieira, B. C., Montgomery, D. R., & Greenberg, H. (2004). Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling. CATENA, 55(2), 163–181.CrossRef
Zurück zum Zitat Fernández, T., Jiménez-Perálvarez, J. D., Fernández, P., El Hamdouni, R., Cardenal, F. J., Delgado, J., et al. (2008) Automatic detection of landslide features with remote sensing techniques in the Betic Cordilleras (Granada, Southern Spain). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII. Part B8: 351–356. ISSN 1682–1750. Fernández, T., Jiménez-Perálvarez, J. D., Fernández, P., El Hamdouni, R., Cardenal, F. J., Delgado, J., et al. (2008) Automatic detection of landslide features with remote sensing techniques in the Betic Cordilleras (Granada, Southern Spain). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII. Part B8: 351–356. ISSN 1682–1750.
Zurück zum Zitat Fornaciai, A., Bisson, M., Landi, P., Mazzarini, F., & Pareschi, M. T. (2010). A LiDAR survey of Stromboli volcano (Italy): Digital elevation model-based geomorphology and intensity analysis. International Journal of Remote Sensing, 31(12), 3177–3194.CrossRef Fornaciai, A., Bisson, M., Landi, P., Mazzarini, F., & Pareschi, M. T. (2010). A LiDAR survey of Stromboli volcano (Italy): Digital elevation model-based geomorphology and intensity analysis. International Journal of Remote Sensing, 31(12), 3177–3194.CrossRef
Zurück zum Zitat Ghuffar, S., Székely, B., Roncat, A., & Pfeifer, N. (2013). Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sensing, 5(6), 2720–2745.CrossRef Ghuffar, S., Székely, B., Roncat, A., & Pfeifer, N. (2013). Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sensing, 5(6), 2720–2745.CrossRef
Zurück zum Zitat Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Analysis of LiDAR derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73, 131–148.CrossRef Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Analysis of LiDAR derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73, 131–148.CrossRef
Zurück zum Zitat Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42–66.CrossRef Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42–66.CrossRef
Zurück zum Zitat Habib, A. (2008). Accuracy, quality assurance and quality control of LiDAR data, Chap 9. Topographic laser ranging and scanning: Principles and processing (pp. 269–294). Boca Rotan: CRC Press, Taylor & Francis. Habib, A. (2008). Accuracy, quality assurance and quality control of LiDAR data, Chap 9. Topographic laser ranging and scanning: Principles and processing (pp. 269–294). Boca Rotan: CRC Press, Taylor & Francis.
Zurück zum Zitat Habib, A. F., Kersting, A. P., Shaker, A., & Yan, W. Y. (2011). Geometric calibration and radiometric correction of LiDAR data and their impact on the quality of derived products. Sensors, 11(9), 9069–9097.CrossRef Habib, A. F., Kersting, A. P., Shaker, A., & Yan, W. Y. (2011). Geometric calibration and radiometric correction of LiDAR data and their impact on the quality of derived products. Sensors, 11(9), 9069–9097.CrossRef
Zurück zum Zitat Haneberg, W. C., Cole, W. F., & Kasali, G. (2009). High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bulletin of Engineering Geology and the Environment, 68, 263–276.CrossRef Haneberg, W. C., Cole, W. F., & Kasali, G. (2009). High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bulletin of Engineering Geology and the Environment, 68, 263–276.CrossRef
Zurück zum Zitat Hanson, G. E. (1999). U.S. Patent No. 5,872,354. Washington, DC: U.S. Patent and Trademark Office‏. Hanson, G. E. (1999). U.S. Patent No. 5,872,354. Washington, DC: U.S. Patent and Trademark Office‏.
Zurück zum Zitat Hervás, J., Barredo, J. I., Rosin, P. L., Pasuto, A., Mantovani, F., & Silvano, S. (2003). Monitoring landslides from optical remotely sensed imagery: The case history of Tessina landslide, Italy. Geomorphology, 54, 63–75.CrossRef Hervás, J., Barredo, J. I., Rosin, P. L., Pasuto, A., Mantovani, F., & Silvano, S. (2003). Monitoring landslides from optical remotely sensed imagery: The case history of Tessina landslide, Italy. Geomorphology, 54, 63–75.CrossRef
Zurück zum Zitat Hungr, O., & Evans, S. G. (2004). The occurrence and classification of massive rock slope failure. Felsbau, 22(2), 16–23. Hungr, O., & Evans, S. G. (2004). The occurrence and classification of massive rock slope failure. Felsbau, 22(2), 16–23.
Zurück zum Zitat Hungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221–238.CrossRef Hungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221–238.CrossRef
Zurück zum Zitat Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., et al. (2012). Use of LiDAR in landslide investigations: A review. Natural Hazards, 61, 5–28.CrossRef Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., et al. (2012). Use of LiDAR in landslide investigations: A review. Natural Hazards, 61, 5–28.CrossRef
Zurück zum Zitat Jahromi, A. B., Zoej, M. J. V., Mohammadzadeh, A., & Sadeghian, S. (2011). A novel filtering algorithm for bare-earth extraction from airborne laser scanning data using an artificial neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4), 836–843.CrossRef Jahromi, A. B., Zoej, M. J. V., Mohammadzadeh, A., & Sadeghian, S. (2011). A novel filtering algorithm for bare-earth extraction from airborne laser scanning data using an artificial neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4), 836–843.CrossRef
Zurück zum Zitat Kannan, M., Saranathan, E., & Anabalagan, R. (2013). Landslide vulnerability mapping using frequency ratio model: A geospatial approach in Bodi-Bodimettu Ghat section. Arabian Journal of Geosciences, 6(8), 2901–2913.CrossRef Kannan, M., Saranathan, E., & Anabalagan, R. (2013). Landslide vulnerability mapping using frequency ratio model: A geospatial approach in Bodi-Bodimettu Ghat section. Arabian Journal of Geosciences, 6(8), 2901–2913.CrossRef
Zurück zum Zitat Katz, O., Morgan, J. K., Aharonov, E., & Dugan, B. (2014). Controls on the size and geometry of landslides: Insights from discrete element numerical simulations. Geomorphology, 220, 104–113.CrossRef Katz, O., Morgan, J. K., Aharonov, E., & Dugan, B. (2014). Controls on the size and geometry of landslides: Insights from discrete element numerical simulations. Geomorphology, 220, 104–113.CrossRef
Zurück zum Zitat Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., et al. (1999). Rapid thinning of parts of the southern Greenland ice sheet. Science (New York, N.Y.), 283(5407), 1522–1524.CrossRef Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., et al. (1999). Rapid thinning of parts of the southern Greenland ice sheet. Science (New York, N.Y.), 283(5407), 1522–1524.CrossRef
Zurück zum Zitat Krabill, W., Thomas, R., Martin, C., Swift, R., & Frederick, E. (1995). Accuracy of airborne laser altimetry over the Greenland ice sheet. International Journal of Remote Sensing, 16(7), 1211–1222.CrossRef Krabill, W., Thomas, R., Martin, C., Swift, R., & Frederick, E. (1995). Accuracy of airborne laser altimetry over the Greenland ice sheet. International Journal of Remote Sensing, 16(7), 1211–1222.CrossRef
Zurück zum Zitat Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4), 193–203.CrossRef Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4), 193–203.CrossRef
Zurück zum Zitat Kritikos, T., & Davies, T. (2015). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western Southern Alps of New Zealand. Landslides, 12(6), 1051–1075.CrossRef Kritikos, T., & Davies, T. (2015). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western Southern Alps of New Zealand. Landslides, 12(6), 1051–1075.CrossRef
Zurück zum Zitat Lan, H., Martin, C. D., Zhou, C., & Lim, C. H. (2010). Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology, 118(1), 213–223.CrossRef Lan, H., Martin, C. D., Zhou, C., & Lim, C. H. (2010). Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology, 118(1), 213–223.CrossRef
Zurück zum Zitat Latif, Z. A., Aman, S. N. A., & Pradhan, B. (2012, March). Landslide susceptibility mapping using LiDAR derived factors and frequency ratio model: Ulu Klang area, Malaysia. In IEEE 8th international colloquium on signal processing and its applications (CSPA), 2012 (pp. 378–382). IEEE. Latif, Z. A., Aman, S. N. A., & Pradhan, B. (2012, March). Landslide susceptibility mapping using LiDAR derived factors and frequency ratio model: Ulu Klang area, Malaysia. In IEEE 8th international colloquium on signal processing and its applications (CSPA), 2012 (pp. 378–382). IEEE.
Zurück zum Zitat Lemmens, M. (2011). Geo-information: Technologies, applications and the environment (Vol. 5). Berlin: Springer Science & Business Media.CrossRef Lemmens, M. (2011). Geo-information: Technologies, applications and the environment (Vol. 5). Berlin: Springer Science & Business Media.CrossRef
Zurück zum Zitat Lichti, D. D. (2007). Error modeling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5), 307–324.CrossRef Lichti, D. D. (2007). Error modeling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5), 307–324.CrossRef
Zurück zum Zitat Lichti, D. D., & Jamtsho, S. (2006). Angular resolution of terrestrial laser scanners. The Photogrammetric Record, 21(114), 141–160.CrossRef Lichti, D. D., & Jamtsho, S. (2006). Angular resolution of terrestrial laser scanners. The Photogrammetric Record, 21(114), 141–160.CrossRef
Zurück zum Zitat Lindenberger, J. (1993). Laser-Profilmessungen zur Topographischen Ge-landeaufnahme (Doctoral dissertation, Zugl.: Stuttgart, Univ., Diss., 1992). Lindenberger, J. (1993). Laser-Profilmessungen zur Topographischen Ge-landeaufnahme (Doctoral dissertation, Zugl.: Stuttgart, Univ., Diss., 1992).
Zurück zum Zitat Lu, P., Stumpf, A., Kerle, N., & Casagli, N. (2011). Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and Remote Sensing Letters, 8(4), 701–705.CrossRef Lu, P., Stumpf, A., Kerle, N., & Casagli, N. (2011). Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and Remote Sensing Letters, 8(4), 701–705.CrossRef
Zurück zum Zitat Manetti, L., & Steinmann, G. (2007). 3DeMoN ROBOVEC-integration of a new measuring instrument in an existing generic remote monitoring platform. In 7th international symposium on field measurements in geomechanics. FMGM, (LMS-CONF-2008-035) (pp. 1–12). Manetti, L., & Steinmann, G. (2007). 3DeMoN ROBOVEC-integration of a new measuring instrument in an existing generic remote monitoring platform. In 7th international symposium on field measurements in geomechanics. FMGM, (LMS-CONF-2008-035) (pp. 1–12).
Zurück zum Zitat McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57, 331–351.CrossRef McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57, 331–351.CrossRef
Zurück zum Zitat Moosavi, V., Talebi, A., & Shirmohammadi, B. (2014). Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology, 204, 646–656.CrossRef Moosavi, V., Talebi, A., & Shirmohammadi, B. (2014). Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology, 204, 646–656.CrossRef
Zurück zum Zitat Nefeslioglu, H. A., Duman, T. Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3), 401–418.CrossRef Nefeslioglu, H. A., Duman, T. Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3), 401–418.CrossRef
Zurück zum Zitat Nichol, J., & Wong, M. S. (2005). Satellite remote sensing for detailed landslide inventories using change detection and image fusion. International Journal of Remote Sensing, 26(9), 1913–1926.CrossRef Nichol, J., & Wong, M. S. (2005). Satellite remote sensing for detailed landslide inventories using change detection and image fusion. International Journal of Remote Sensing, 26(9), 1913–1926.CrossRef
Zurück zum Zitat Pesci, A., Teza, G., & Ventura, G. (2008). Remote sensing of volcanic terrains by terrestrial laser scanner: Preliminary reflectance and RGB implications for studying Vesuvius crater (Italy). Annals of Geophysics, 51(4), 633–653. Pesci, A., Teza, G., & Ventura, G. (2008). Remote sensing of volcanic terrains by terrestrial laser scanner: Preliminary reflectance and RGB implications for studying Vesuvius crater (Italy). Annals of Geophysics, 51(4), 633–653.
Zurück zum Zitat Petrie, G., & Toth, C. K. (2008). Introduction to laser ranging, profiling, and scanning. Topographic Laser Ranging and Scanning: Principles and Processing, 1–28. Petrie, G., & Toth, C. K. (2008). Introduction to laser ranging, profiling, and scanning. Topographic Laser Ranging and Scanning: Principles and Processing, 1–28.
Zurück zum Zitat Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed. Natural hazards, 63(2), 965–996‏. Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed. Natural hazards, 63(2), 965–996‏.
Zurück zum Zitat Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, H. R. (2013). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences, 6(7), 2351–2365.CrossRef Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, H. R. (2013). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences, 6(7), 2351–2365.CrossRef
Zurück zum Zitat Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.CrossRef Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.CrossRef
Zurück zum Zitat Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1610–1622.CrossRef Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1610–1622.CrossRef
Zurück zum Zitat Pradhan, A. M. S., & Kim, Y. T. (2014). Relative effect method of landslide susceptibility zonation in weathered granite soil: A case study in Deokjeokri Creek, South Korea. Natural Hazards, 72(2), 1189–1217.CrossRef Pradhan, A. M. S., & Kim, Y. T. (2014). Relative effect method of landslide susceptibility zonation in weathered granite soil: A case study in Deokjeokri Creek, South Korea. Natural Hazards, 72(2), 1189–1217.CrossRef
Zurück zum Zitat Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., et al. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725–742.CrossRef Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., et al. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725–742.CrossRef
Zurück zum Zitat Roering, J. J., Mackey, B. H., Marshall, J. A., Sweeney, K. E., Deligne, N. I., Booth, A. M., et al. (2013). Connecting the dots with airborne LiDAR for geomorphic fieldwork. Geomorphology, 200, 172–183.CrossRef Roering, J. J., Mackey, B. H., Marshall, J. A., Sweeney, K. E., Deligne, N. I., Booth, A. M., et al. (2013). Connecting the dots with airborne LiDAR for geomorphic fieldwork. Geomorphology, 200, 172–183.CrossRef
Zurück zum Zitat Scaioni, M., Feng, Y., Lu, P., Qiao, G., Tong, X., Li, R., et al. (2014). Close-range photogrammetric techniques for deformation measurement: Applications to landslides. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 13–41). Berlin: Springer. Scaioni, M., Feng, Y., Lu, P., Qiao, G., Tong, X., Li, R., et al. (2014). Close-range photogrammetric techniques for deformation measurement: Applications to landslides. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 13–41). Berlin: Springer.
Zurück zum Zitat Schulz, W. H. (2004). Landslides mapped using LiDAR imagery, Seattle, Washington. US Geological Survey Open-File Report, 1396(11)‏. Schulz, W. H. (2004). Landslides mapped using LiDAR imagery, Seattle, Washington. US Geological Survey Open-File Report, 1396(11)‏.
Zurück zum Zitat Schwalbe, E., & Maas, H. G. (2009). Motion analysis of fast flowing glaciers from multi-temporal terrestrial laser scanning. Photogrammetrie-Fernerkundung-Geoinformation, 2009(1), 91–98.CrossRef Schwalbe, E., & Maas, H. G. (2009). Motion analysis of fast flowing glaciers from multi-temporal terrestrial laser scanning. Photogrammetrie-Fernerkundung-Geoinformation, 2009(1), 91–98.CrossRef
Zurück zum Zitat Sithole, G., & Vosselman, G. (2001). Filtering of laser altimetry data using a slope adaptive filter. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/W4), 203–210. Sithole, G., & Vosselman, G. (2001). Filtering of laser altimetry data using a slope adaptive filter. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/W4), 203–210.
Zurück zum Zitat Slatton, K. C., Carter, W. E., Shrestha, R. L., & Dietrich, W. (2007). Airborne laser swath mapping: Achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34(23). Slatton, K. C., Carter, W. E., Shrestha, R. L., & Dietrich, W. (2007). Airborne laser swath mapping: Achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34(23).
Zurück zum Zitat Takahashi, T. (2014). Debris flow: Mechanics, prediction and countermeasures. Boca Raton: CRC Press.CrossRef Takahashi, T. (2014). Debris flow: Mechanics, prediction and countermeasures. Boca Raton: CRC Press.CrossRef
Zurück zum Zitat Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319.CrossRef Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319.CrossRef
Zurück zum Zitat Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering.‏ Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering.‏
Zurück zum Zitat Toutin, T. (2002). Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 57(3), 228–240.CrossRef Toutin, T. (2002). Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 57(3), 228–240.CrossRef
Zurück zum Zitat Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., et al. (2005). The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology, 67(3), 351–363.CrossRef Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., et al. (2005). The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology, 67(3), 351–363.CrossRef
Zurück zum Zitat Van Westen, C. J., Castellanos, E., & Kuriakose, S. K. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102, 112–131.CrossRef Van Westen, C. J., Castellanos, E., & Kuriakose, S. K. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102, 112–131.CrossRef
Zurück zum Zitat van Westen, C. J., van Asch, T. W. J., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65, 167–184.CrossRef van Westen, C. J., van Asch, T. W. J., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65, 167–184.CrossRef
Zurück zum Zitat Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), 935–942. Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), 935–942.
Zurück zum Zitat Wang, G., Joyce, J., Phillips, D., Shrestha, R., & Carter, W. (2013). Delineating and de-fining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LiDAR data. Landslides, 10(4), 503–513.CrossRef Wang, G., Joyce, J., Phillips, D., Shrestha, R., & Carter, W. (2013). Delineating and de-fining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LiDAR data. Landslides, 10(4), 503–513.CrossRef
Zurück zum Zitat Wehr, A., & Lohr, U. (1999). Airborne laser scanning—An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 68–82.CrossRef Wehr, A., & Lohr, U. (1999). Airborne laser scanning—An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 68–82.CrossRef
Zurück zum Zitat Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of transportation applications of mobile LiDAR. Remote Sensing, 5(9), 4652–4692.CrossRef Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of transportation applications of mobile LiDAR. Remote Sensing, 5(9), 4652–4692.CrossRef
Zurück zum Zitat Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72(1), 1–12.CrossRef Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72(1), 1–12.CrossRef
Zurück zum Zitat Yalcin, A., & Bulut, F. (2007). Landslide susceptibility mapping using GIS and digital photogrammetric techniques: A case study from Ardesen (NE-Turkey). Natural Hazards, 41(1), 201–226.CrossRef Yalcin, A., & Bulut, F. (2007). Landslide susceptibility mapping using GIS and digital photogrammetric techniques: A case study from Ardesen (NE-Turkey). Natural Hazards, 41(1), 201–226.CrossRef
Zurück zum Zitat Yan, W. Y., Shaker, A., Habib, A., & Kersting, A. P. (2012). Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 35–44.CrossRef Yan, W. Y., Shaker, A., Habib, A., & Kersting, A. P. (2012). Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 35–44.CrossRef
Zurück zum Zitat Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A com-parison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251–266.CrossRef Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A com-parison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251–266.CrossRef
Zurück zum Zitat Zhan, Z., & Lai, B. (2015). A novel DSM filtering algorithm for landslide monitoring based on multiconstraints. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1), 324–331.CrossRef Zhan, Z., & Lai, B. (2015). A novel DSM filtering algorithm for landslide monitoring based on multiconstraints. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1), 324–331.CrossRef
Zurück zum Zitat Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872–882.CrossRef Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872–882.CrossRef
Zurück zum Zitat Zhang, Q., Wang, L., Zhang, X. Y., Huang, G. W., Ding, X. L., Dai, W. J., & Yang, W. T. (2008). Application of multi-antenna GPS technique in the stability monitoring of roadside slopes. In Landslides and engineered slopes: From the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes (pp. 1367–1372). Xi’an: Taylor & Francis. Zhang, Q., Wang, L., Zhang, X. Y., Huang, G. W., Ding, X. L., Dai, W. J., & Yang, W. T. (2008). Application of multi-antenna GPS technique in the stability monitoring of roadside slopes. In Landslides and engineered slopes: From the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes (pp. 1367–1372). Xi’an: Taylor & Francis.
Zurück zum Zitat Zhang, Y., Xiong, X., & Hu, X. (2013). Rigorous LiDAR strip adjustment with tri-angulated aerial imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(W2), 361–366.CrossRef Zhang, Y., Xiong, X., & Hu, X. (2013). Rigorous LiDAR strip adjustment with tri-angulated aerial imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(W2), 361–366.CrossRef
Zurück zum Zitat Zhang, Y., Xiong, X., Zheng, M., & Huang, X. (2015). LiDAR strip adjustment using multifeatures matched with aerial images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 976–987.CrossRef Zhang, Y., Xiong, X., Zheng, M., & Huang, X. (2015). LiDAR strip adjustment using multifeatures matched with aerial images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 976–987.CrossRef
Metadaten
Titel
Laser Scanning Systems in Landslide Studies
verfasst von
Biswajeet Pradhan
Maher Ibrahim Sameen
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55342-9_1