Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Laser Scanning Technologies in Road Geometry Modeling

verfasst von : Biswajeet Pradhan, Maher Ibrahim Sameen

Erschienen in: Laser Scanning Systems in Highway and Safety Assessment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent developments in laser scanning technology have improved 3D spatial data acquisition in road environments. These technological developments have provided rapid and cost-effective data acquisition for road corridors and surrounding areas (Guan et al. 2014; Li et al. 2016; Li and He 2016; Lin et al. 2011). Several methods have been proposed for the delineation of geometric road information from laser scanning data. Road geometric information includes road width, cross section, and superelevation and involves the number of road lanes and vertical and horizontal curves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076. Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076.
Zurück zum Zitat Arastounia, M. (2012). Automatic classification of lidar point clouds in a railway environment (p. 83). Netherlands: University of Twente. Arastounia, M. (2012). Automatic classification of lidar point clouds in a railway environment (p. 83). Netherlands: University of Twente.
Zurück zum Zitat Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.CrossRef Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.CrossRef
Zurück zum Zitat Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162–172.CrossRef Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162–172.CrossRef
Zurück zum Zitat Charaniya, A. P., Manduchi, R., & Lodha, S. K. (2004). Supervised parametric classification of aerial lidar data. Paper presented at the Conference on Computer Vision and Pattern Recognition Workshop, 2004. CVPRW ‘04. Charaniya, A. P., Manduchi, R., & Lodha, S. K. (2004). Supervised parametric classification of aerial lidar data. Paper presented at the Conference on Computer Vision and Pattern Recognition Workshop, 2004. CVPRW ‘04.
Zurück zum Zitat Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75(15), 1129. Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75(15), 1129.
Zurück zum Zitat Fanos, A. M., Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: A critical review. Earth Systems and Environment, 2(2), 163–182. Fanos, A. M., Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: A critical review. Earth Systems and Environment, 2(2), 163–182.
Zurück zum Zitat Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & bin Abdullah, A. F. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15(9), 1833–1850. Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & bin Abdullah, A. F. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15(9), 1833–1850.
Zurück zum Zitat Ferraz, A., Mallet, C., & Chehata, N. (2016). Large-scale road detection in forested mountainous areas using airborne topographic lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 112, 23–36.CrossRef Ferraz, A., Mallet, C., & Chehata, N. (2016). Large-scale road detection in forested mountainous areas using airborne topographic lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 112, 23–36.CrossRef
Zurück zum Zitat Fiedler, P. E. K., & Zannin, P. H. T. (2015). Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements. Environmental Impact Assessment Review, 51, 1–9.CrossRef Fiedler, P. E. K., & Zannin, P. H. T. (2015). Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements. Environmental Impact Assessment Review, 51, 1–9.CrossRef
Zurück zum Zitat Gikas, V. (2012). Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation. Sensors, 12(8), 11249–11270.CrossRef Gikas, V. (2012). Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation. Sensors, 12(8), 11249–11270.CrossRef
Zurück zum Zitat Glennie, C. (2009). Kinematic terrestrial light-detection and ranging system for scanning. Transportation Research Record: Journal of the Transportation Research Board, 2105(1), 135–141. Glennie, C. (2009). Kinematic terrestrial light-detection and ranging system for scanning. Transportation Research Record: Journal of the Transportation Research Board, 2105(1), 135–141.
Zurück zum Zitat Gong, J., Zhou, H., Gordon, C., & Jalayer, M. (2012). Mobile terrestrial laser scanning for highway inventory data collection. In Computing in Civil Engineering (pp. 545–552). Gong, J., Zhou, H., Gordon, C., & Jalayer, M. (2012). Mobile terrestrial laser scanning for highway inventory data collection. In Computing in Civil Engineering (pp. 545–552).
Zurück zum Zitat Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S., & Laurgeau, C. (2006). An integrated on-board laser range sensing system for on-the-way city and road modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(A). Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S., & Laurgeau, C. (2006). An integrated on-board laser range sensing system for on-the-way city and road modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(A).
Zurück zum Zitat Guan, H., Li, J., Yu, Y., Wang, C., Chapman, M., & Yang, B. (2014). Using mobile laser scanning data for automated extraction of road markings. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 93–107.CrossRef Guan, H., Li, J., Yu, Y., Wang, C., Chapman, M., & Yang, B. (2014). Using mobile laser scanning data for automated extraction of road markings. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 93–107.CrossRef
Zurück zum Zitat Guan, H., Li, J., Yu, Y., Ji, Z., & Wang, C. (2015). Using mobile LiDAR data for rapidly updating road markings. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2457–2466.CrossRef Guan, H., Li, J., Yu, Y., Ji, Z., & Wang, C. (2015). Using mobile LiDAR data for rapidly updating road markings. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2457–2466.CrossRef
Zurück zum Zitat Hartfield, K. A., Landau, K. I., & Van Leeuwen, W. J. (2011). Fusion of high resolution aerial multispectral and LiDAR data: Land cover in the context of urban mosquito habitat. Remote Sensing, 3(11), 2364–2383.CrossRef Hartfield, K. A., Landau, K. I., & Van Leeuwen, W. J. (2011). Fusion of high resolution aerial multispectral and LiDAR data: Land cover in the context of urban mosquito habitat. Remote Sensing, 3(11), 2364–2383.CrossRef
Zurück zum Zitat He, Y., Song, Z., & Liu, Z. (2017). Updating highway asset inventory using airborne LiDAR. Measurement, 104, 132–141.CrossRef He, Y., Song, Z., & Liu, Z. (2017). Updating highway asset inventory using airborne LiDAR. Measurement, 104, 132–141.CrossRef
Zurück zum Zitat Hui, Z., Hu, Y., Jin, S., & Yevenyo, Y. Z. (2016). Road centerline extraction from airborne LiDAR point cloud based on hierarchical fusion and optimization. ISPRS Journal of Photogrammetry and Remote Sensing, 118, 22–36.CrossRef Hui, Z., Hu, Y., Jin, S., & Yevenyo, Y. Z. (2016). Road centerline extraction from airborne LiDAR point cloud based on hierarchical fusion and optimization. ISPRS Journal of Photogrammetry and Remote Sensing, 118, 22–36.CrossRef
Zurück zum Zitat Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88. Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88.
Zurück zum Zitat Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Khairunniza-Bejo, S. (2016) Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023. Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Khairunniza-Bejo, S. (2016) Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023.
Zurück zum Zitat Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544. Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544.
Zurück zum Zitat Jalayer, M., Gong, J., Zhou, H., & Grinter, M. (2015). Evaluation of remote sensing technologies for collecting roadside feature data to support highway safety manual implementation. Journal of Transportation Safety & Security, 7(4), 345–357.CrossRef Jalayer, M., Gong, J., Zhou, H., & Grinter, M. (2015). Evaluation of remote sensing technologies for collecting roadside feature data to support highway safety manual implementation. Journal of Transportation Safety & Security, 7(4), 345–357.CrossRef
Zurück zum Zitat Kukko, A., Jaakkola, A., Lehtomaki, M., Kaartinen, H., & Chen, Y. (2009, May). Mobile mapping system and computing methods for modeling of the road environment. In 2009 Joint Urban Remote Sensing Event (pp. 1–6). IEEE. Kukko, A., Jaakkola, A., Lehtomaki, M., Kaartinen, H., & Chen, Y. (2009, May). Mobile mapping system and computing methods for modeling of the road environment. In 2009 Joint Urban Remote Sensing Event (pp. 1–6). IEEE.
Zurück zum Zitat Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2013). An automated algorithm for extracting road edges from terrestrial mobile LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 44–55.CrossRef Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2013). An automated algorithm for extracting road edges from terrestrial mobile LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 44–55.CrossRef
Zurück zum Zitat Li, M., Stein, A., Bijker, W., & Zhan, Q. (2016). Region-based urban road extraction from VHR satellite images using binary partition tree. International Journal of Applied Earth Observation and Geoinformation, 44, 217–225.CrossRef Li, M., Stein, A., Bijker, W., & Zhan, Q. (2016). Region-based urban road extraction from VHR satellite images using binary partition tree. International Journal of Applied Earth Observation and Geoinformation, 44, 217–225.CrossRef
Zurück zum Zitat Liu, Y., Monteiro, S. T., & Saber, E. (2016, July). Vehicle detection from aerial color imagery and airborne LiDAR data. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1384–1387). IEEE. Liu, Y., Monteiro, S. T., & Saber, E. (2016, July). Vehicle detection from aerial color imagery and airborne LiDAR data. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1384–1387). IEEE.
Zurück zum Zitat Minh, N. Q., & Hien, L. P. (2011). Land cover classification using LiDAR intensity data and neural network. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 29(4), 429–438.CrossRef Minh, N. Q., & Hien, L. P. (2011). Land cover classification using LiDAR intensity data and neural network. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 29(4), 429–438.CrossRef
Zurück zum Zitat Pagounis, V., Tsakiri, M., & Palaskas, S. (2007). Road safety analysis: Terrestrial laser scanning to improve road safety. Pagounis, V., Tsakiri, M., & Palaskas, S. (2007). Road safety analysis: Terrestrial laser scanning to improve road safety.
Zurück zum Zitat Pereira, L. M. G., & Janssen, L. L. F. (1999). Suitability of laser data for DTM generation: A case study in the context of road planning and design, ISPRS Journal of Photogrammetry and Remote Sensing, 54, 244–253. Pereira, L. M. G., & Janssen, L. L. F. (1999). Suitability of laser data for DTM generation: A case study in the context of road planning and design, ISPRS Journal of Photogrammetry and Remote Sensing, 54, 244–253.
Zurück zum Zitat Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and remote sensing, 54(3), 1610–1622. Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and remote sensing, 54(3), 1610–1622.
Zurück zum Zitat Pradhan, B. (2017). Laser Scanning Applications in Landslide Assessment. Springer International Publishing, Germany. ISBN 978-3-319-55341-2; eBook ISBN 978-3-319-55342-9. Pradhan, B. (2017). Laser Scanning Applications in Landslide Assessment. Springer International Publishing, Germany. ISBN 978-3-319-55341-2; eBook ISBN 978-3-319-55342-9.
Zurück zum Zitat Pu, S., Rutzinger, M., Vosselman, G., & Elberink, S. O. (2011). Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S28–S39.CrossRef Pu, S., Rutzinger, M., Vosselman, G., & Elberink, S. O. (2011). Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S28–S39.CrossRef
Zurück zum Zitat Puente, I., González-Jorge, H., Martínez-Sánchez, J., & Arias, P. (2013). Review of mobile mapping and surveying technologies. Measurement, 46(7), 2127–2145. Puente, I., González-Jorge, H., Martínez-Sánchez, J., & Arias, P. (2013). Review of mobile mapping and surveying technologies. Measurement, 46(7), 2127–2145.
Zurück zum Zitat Sameen, M. I., Pradhan, B., Shafri, H. Z., Mezaal, M. R., & bin Hamid, H. (2017). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066. Sameen, M. I., Pradhan, B., Shafri, H. Z., Mezaal, M. R., & bin Hamid, H. (2017). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066.
Zurück zum Zitat Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors, 2017. Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors, 2017.
Zurück zum Zitat Sameen, M. I., & Pradhan, B. (2017c). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405. Sameen, M. I., & Pradhan, B. (2017c). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405.
Zurück zum Zitat Shamayleh, H., & Khattak, A. (2003, August). Utilization of LiDAR technology for highway inventory. In Proceedings of the 2003 Mid-continent Transportation Research Symposium, Ames, Iowa. Shamayleh, H., & Khattak, A. (2003, August). Utilization of LiDAR technology for highway inventory. In Proceedings of the 2003 Mid-continent Transportation Research Symposium, Ames, Iowa.
Zurück zum Zitat Tao, C. V., & Li, J. (eds.) (2007) Advances in Mobile Mapping Technology. Taylor & Francis Group, London, ISBN 978-0-415-42723-4. Tao, C. V., & Li, J. (eds.) (2007) Advances in Mobile Mapping Technology. Taylor & Francis Group, London, ISBN 978-0-415-42723-4.
Zurück zum Zitat Uddin, W. (2008). Airborne laser terrain mapping for expediting highway projects: Evaluation of accuracy and cost. Journal of Construction Engineering and Management, 134(6), 411–420.CrossRef Uddin, W. (2008). Airborne laser terrain mapping for expediting highway projects: Evaluation of accuracy and cost. Journal of Construction Engineering and Management, 134(6), 411–420.CrossRef
Zurück zum Zitat Vosselman, G., & Maas, H-G. (eds.) (2010). Airborne and terrestrial laser scanning, Boca. Raton, London, New York, CRC Press, Taylor and Francis Group, 2010, xxiv'311 pp., ISBN 978-1904445-87-6. Vosselman, G., & Maas, H-G. (eds.) (2010). Airborne and terrestrial laser scanning, Boca. Raton, London, New York, CRC Press, Taylor and Francis Group, 2010, xxiv'311 pp., ISBN 978-1904445-87-6.
Zurück zum Zitat Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of transportation applications of mobile LiDAR. Remote Sensing, 5(9), 4652–4692.CrossRef Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of transportation applications of mobile LiDAR. Remote Sensing, 5(9), 4652–4692.CrossRef
Zurück zum Zitat Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., et al. (2012). Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 121, 196–209.CrossRef Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., et al. (2012). Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 121, 196–209.CrossRef
Zurück zum Zitat Yang, B., Fang, L., & Li, J. (2013). Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 80–93.CrossRef Yang, B., Fang, L., & Li, J. (2013). Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 80–93.CrossRef
Zurück zum Zitat Yen, K. S., Ravani, B., & Lasky, T. A. (2011). LiDAR for data efficiency (No. WA-RD 778.1). Yen, K. S., Ravani, B., & Lasky, T. A. (2011). LiDAR for data efficiency (No. WA-RD 778.1).
Zurück zum Zitat Yu, Y., Li, J., Guan, H., Jia, F., & Wang, C. (2015). Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 709–726.CrossRef Yu, Y., Li, J., Guan, H., Jia, F., & Wang, C. (2015). Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 709–726.CrossRef
Zurück zum Zitat Zampa, F., & Conforti, D. (2009). Mapping with mobile lidar. GIM International, 23(4), 35–37. Zampa, F., & Conforti, D. (2009). Mapping with mobile lidar. GIM International, 23(4), 35–37.
Zurück zum Zitat Zhang, J., Duan, M., Yan, Q., & Lin, X. (2014). Automatic vehicle extraction from airborne LiDAR data using an object-based point cloud analysis method. Remote Sensing, 6(9), 8405–8423.CrossRef Zhang, J., Duan, M., Yan, Q., & Lin, X. (2014). Automatic vehicle extraction from airborne LiDAR data using an object-based point cloud analysis method. Remote Sensing, 6(9), 8405–8423.CrossRef
Metadaten
Titel
Laser Scanning Technologies in Road Geometry Modeling
verfasst von
Biswajeet Pradhan
Maher Ibrahim Sameen
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-10374-3_1

    Premium Partner