Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 4/2020

04.03.2020 | Original Article

Lattice-Boltzmann interactive blood flow simulation pipeline

verfasst von: Sahar S. Esfahani, Xiaojun Zhai, Minsi Chen, Abbes Amira, Faycal Bensaali, Julien AbiNahed, Sarada Dakua, Georges Younes, Abdulla Baobeid, Robin A. Richardson, Peter V. Coveney

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Cerebral aneurysms are one of the prevalent cerebrovascular disorders in adults worldwide and caused by a weakness in the brain artery. The most impressive treatment for a brain aneurysm is interventional radiology treatment, which is extremely dependent on the skill level of the radiologist. Hence, accurate detection and effective therapy for cerebral aneurysms still remain important clinical challenges. In this work, we have introduced a pipeline for cerebral blood flow simulation and real-time visualization incorporating all aspects from medical image acquisition to real-time visualization and steering.

Methods

We have developed and employed an improved version of HemeLB as the main computational core of the pipeline. HemeLB is a massive parallel lattice-Boltzmann fluid solver optimized for sparse and complex geometries. The visualization component of this pipeline is based on the ray marching method implemented on CUDA capable GPU cores.

Results

The proposed visualization engine is evaluated comprehensively and the reported results demonstrate that it achieves significantly higher scalability and sites updates per second, indicating higher update rate of geometry sites’ values, in comparison with the original HemeLB. This proposed engine is more than two times faster and capable of 3D visualization of the results by processing more than 30 frames per second.

Conclusion

A reliable modeling and visualizing environment for measuring and displaying blood flow patterns in vivo, which can provide insight into the hemodynamic characteristics of cerebral aneurysms, is presented in this work. This pipeline increases the speed of visualization and maximizes the performance of the processing units to do the tasks by breaking them into smaller tasks and working with GPU to render the images. Hence, the proposed pipeline can be applied as part of clinical routines to provide the clinicians with the real-time cerebral blood flow-related information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Pierot L, Spelle L, Leclerc X, Cognard C, Bonafé A, Moret J (2009) Endovascular treatment of unruptured intracranial aneurysms: comparison of safety of remodeling technique and standard treatment with coils. Radiology 251(3):846CrossRef Pierot L, Spelle L, Leclerc X, Cognard C, Bonafé A, Moret J (2009) Endovascular treatment of unruptured intracranial aneurysms: comparison of safety of remodeling technique and standard treatment with coils. Radiology 251(3):846CrossRef
3.
Zurück zum Zitat Mazzeo MD, Coveney PV, Heme LB (2008) A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries. Comput Phys Commun 178(12):894CrossRef Mazzeo MD, Coveney PV, Heme LB (2008) A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries. Comput Phys Commun 178(12):894CrossRef
4.
Zurück zum Zitat Zhai X, Amira A, Bensaali F, Al-Shibani A, Al-Nassr A, El-Sayed A, Eslami M, Dakua SP, Abinahed J (2019) Zynq SoC based acceleration of the lattice Boltzmann method. Concurr Comput Pract Exp 31:e5184CrossRef Zhai X, Amira A, Bensaali F, Al-Shibani A, Al-Nassr A, El-Sayed A, Eslami M, Dakua SP, Abinahed J (2019) Zynq SoC based acceleration of the lattice Boltzmann method. Concurr Comput Pract Exp 31:e5184CrossRef
5.
Zurück zum Zitat Kuznik F, Obrecht C, Rusaouen G, Roux JJ (2010) LBM based flow simulation using gpu computing processor. Comput Math Appl 59(7):2380CrossRef Kuznik F, Obrecht C, Rusaouen G, Roux JJ (2010) LBM based flow simulation using gpu computing processor. Comput Math Appl 59(7):2380CrossRef
6.
Zurück zum Zitat Djelouat H, Zhai X, Al Disi M, Amira A, Bensaali F (2018) System-on-chip solution for patients biometric: a compressive sensing-based approach. IEEE Sens J 18(23):9629CrossRef Djelouat H, Zhai X, Al Disi M, Amira A, Bensaali F (2018) System-on-chip solution for patients biometric: a compressive sensing-based approach. IEEE Sens J 18(23):9629CrossRef
7.
Zurück zum Zitat Groen D, Richardson RA, Coy R, Schiller UD, Chandrashekar H, Robertson F, Coveney PV (2018) Validation of patient-specific cerebral blood flow simulation using transcranial Doppler measurements. Front Physiol 9:721CrossRef Groen D, Richardson RA, Coy R, Schiller UD, Chandrashekar H, Robertson F, Coveney PV (2018) Validation of patient-specific cerebral blood flow simulation using transcranial Doppler measurements. Front Physiol 9:721CrossRef
8.
Zurück zum Zitat Patronis A, Richardson RA, Schmieschek S, Wylie BJ, Nash RW, Coveney PV (2018) Modelling patient-specific magnetic drug targeting within the intracranial vasculature. Front Physiol 9:331CrossRef Patronis A, Richardson RA, Schmieschek S, Wylie BJ, Nash RW, Coveney PV (2018) Modelling patient-specific magnetic drug targeting within the intracranial vasculature. Front Physiol 9:331CrossRef
10.
Zurück zum Zitat Shi H, Chen J, Pan W, Hwang KS, Cho YY (2018) Collision avoidance for redundant robots in position based visual servoing. IEEE Syst J 1(99):1 Shi H, Chen J, Pan W, Hwang KS, Cho YY (2018) Collision avoidance for redundant robots in position based visual servoing. IEEE Syst J 1(99):1
11.
Zurück zum Zitat Zhai X, Chen M, Soheilian S, Amira A, Bensaali F, AbiNahed J, Daku S, Al-Ansari A, Zakaria A (2019) Zynq SoC based lattice-Boltzmann simulation environment. In: 10th IEEE GCC conference and exhibition: powering the 4th industrial revolution (IEEE) Zhai X, Chen M, Soheilian S, Amira A, Bensaali F, AbiNahed J, Daku S, Al-Ansari A, Zakaria A (2019) Zynq SoC based lattice-Boltzmann simulation environment. In: 10th IEEE GCC conference and exhibition: powering the 4th industrial revolution (IEEE)
12.
Zurück zum Zitat Mazzeo MD, Manos S, Coveney PV (2010) In situ ray tracing and computational steering for interactive blood flow simulation. Comput Phys Commun 181(2):355CrossRef Mazzeo MD, Manos S, Coveney PV (2010) In situ ray tracing and computational steering for interactive blood flow simulation. Comput Phys Commun 181(2):355CrossRef
13.
Zurück zum Zitat Kalaiselvi T, Sriramakrishnan P, Somasundaram K (2017) Survey of using GPU CUDA programming model in medical image analysis. Inform Med Unlocked 9:133CrossRef Kalaiselvi T, Sriramakrishnan P, Somasundaram K (2017) Survey of using GPU CUDA programming model in medical image analysis. Inform Med Unlocked 9:133CrossRef
14.
Zurück zum Zitat Ramesh Chandra G, Rajan E (2013) Improving the performance of volume rendering for medical images. Int J Adv Soft Comput Technol 1:2229 Ramesh Chandra G, Rajan E (2013) Improving the performance of volume rendering for medical images. Int J Adv Soft Comput Technol 1:2229
16.
Zurück zum Zitat Uysal E, Yanbuloglu B, Erturk M, Kilinc B, Basak M (2005) Spiral CT angiography in diagnosis of cerebral aneurysms of cases with acute subarachnoid hemorrhage. Diagn Interv Radiol 11:77PubMed Uysal E, Yanbuloglu B, Erturk M, Kilinc B, Basak M (2005) Spiral CT angiography in diagnosis of cerebral aneurysms of cases with acute subarachnoid hemorrhage. Diagn Interv Radiol 11:77PubMed
17.
Zurück zum Zitat McKinney A, Palmer C, Truwit C, Karagulle A, Teksam M (2008) Detection of aneurysms by 64-section multidetector ct angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. Am J Neuroradiol 29(3):594. https://doi.org/10.3174/ajnr.A0848 CrossRefPubMed McKinney A, Palmer C, Truwit C, Karagulle A, Teksam M (2008) Detection of aneurysms by 64-section multidetector ct angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. Am J Neuroradiol 29(3):594. https://​doi.​org/​10.​3174/​ajnr.​A0848 CrossRefPubMed
18.
Zurück zum Zitat Nael K, Villablanca J, Saleh R, Pope W, Nael A, Laub G, Finn J (2006) Contrast-enhanced mr angiography at 3T in the evaluation of intracranial aneurysms: a comparison with time-of-flight mr angiography. Am J Neuroradiol 27(10):2118PubMed Nael K, Villablanca J, Saleh R, Pope W, Nael A, Laub G, Finn J (2006) Contrast-enhanced mr angiography at 3T in the evaluation of intracranial aneurysms: a comparison with time-of-flight mr angiography. Am J Neuroradiol 27(10):2118PubMed
19.
Zurück zum Zitat Schellinger PD, Richter G, Kohrmann M, Dorfler A (2007) Noninvasive angiography (magnetic resonance and computed tomography) in the diagnosis of ischemic cerebrovascular disease. Radiology 24(Suppl 1):16 Schellinger PD, Richter G, Kohrmann M, Dorfler A (2007) Noninvasive angiography (magnetic resonance and computed tomography) in the diagnosis of ischemic cerebrovascular disease. Radiology 24(Suppl 1):16
22.
Zurück zum Zitat van Rooij WJ, Sprengers M, de Gast AN, Peluso J, Sluzewski M (2008) 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. Am J Neuroradiol 29(5):976CrossRef van Rooij WJ, Sprengers M, de Gast AN, Peluso J, Sluzewski M (2008) 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. Am J Neuroradiol 29(5):976CrossRef
23.
Zurück zum Zitat Dakua SP, Abinahed J, Al-Ansari A, Bermejo PG, Zakaria A, Amira A, Bensaali F (2018) A method towards cerebral aneurysm detection in clinical settings. In: Lepore N, Brieva J, Romero E, Racoceanu D, Joskowicz L (eds) Sipaim–Miccai biomedical workshop. Springer, Cham, pp 8–15 Dakua SP, Abinahed J, Al-Ansari A, Bermejo PG, Zakaria A, Amira A, Bensaali F (2018) A method towards cerebral aneurysm detection in clinical settings. In: Lepore N, Brieva J, Romero E, Racoceanu D, Joskowicz L (eds) Sipaim–Miccai biomedical workshop. Springer, Cham, pp 8–15
24.
Zurück zum Zitat Zhai X, Eslami M, Hussein ES, Filali MS, Shalaby ST, Amira A, Bensaali F, Dakua S, Abinahed J, Al-Ansari A, Ahmed AZ (2018) Real-time automated image segmentation technique for cerebral aneurysm on reconfigurable system-on-chip. J Comput Sci 27:35CrossRef Zhai X, Eslami M, Hussein ES, Filali MS, Shalaby ST, Amira A, Bensaali F, Dakua S, Abinahed J, Al-Ansari A, Ahmed AZ (2018) Real-time automated image segmentation technique for cerebral aneurysm on reconfigurable system-on-chip. J Comput Sci 27:35CrossRef
26.
Zurück zum Zitat Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452CrossRef Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452CrossRef
27.
Zurück zum Zitat Ladd AJ (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285CrossRef Ladd AJ (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285CrossRef
28.
Zurück zum Zitat Udupa JK, Hung HM, Chuang KS (1991) Surface and volume rendering in three-dimensional imaging: a comparison. J Digit Imaging 4(3):159CrossRef Udupa JK, Hung HM, Chuang KS (1991) Surface and volume rendering in three-dimensional imaging: a comparison. J Digit Imaging 4(3):159CrossRef
29.
Zurück zum Zitat Zhou K, Ren Z, Lin S, Bao H, Guo B, Shum HY (2008) Real-time smoke rendering using compensated ray marching. In: ACM SIGGRAPH 2008 papers (ACM) Zhou K, Ren Z, Lin S, Bao H, Guo B, Shum HY (2008) Real-time smoke rendering using compensated ray marching. In: ACM SIGGRAPH 2008 papers (ACM)
30.
Zurück zum Zitat Esfahani SS, Zhai X, Chen M, Amira A, Bensaali F, AbiNahed J, Dakua S, Younes G, Richardson RA, Coveney PV (2019) HemeLB acceleration and visualization for cerebral aneurysms. In: IEEE international conference on image processing (ICIP) (IEEE) Esfahani SS, Zhai X, Chen M, Amira A, Bensaali F, AbiNahed J, Dakua S, Younes G, Richardson RA, Coveney PV (2019) HemeLB acceleration and visualization for cerebral aneurysms. In: IEEE international conference on image processing (ICIP) (IEEE)
Metadaten
Titel
Lattice-Boltzmann interactive blood flow simulation pipeline
verfasst von
Sahar S. Esfahani
Xiaojun Zhai
Minsi Chen
Abbes Amira
Faycal Bensaali
Julien AbiNahed
Sarada Dakua
Georges Younes
Abdulla Baobeid
Robin A. Richardson
Peter V. Coveney
Publikationsdatum
04.03.2020
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 4/2020
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-020-02120-3

Weitere Artikel der Ausgabe 4/2020

International Journal of Computer Assisted Radiology and Surgery 4/2020 Zur Ausgabe

Premium Partner