Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 1/2013

01.01.2013 | BUILDINGS AND BUILDING MATERIALS

LCA case study. Part 1: cradle-to-grave environmental footprint analysis of composites and stainless steel I-beams

verfasst von: Suphunnika Ibbotson, Sami Kara

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

I-beams for outdoor structures are traditionally made from conventional materials such as stainless steel due to its high strength and corrosive resistant properties. Alternatively, the I-beam can also be made from composite materials such as glass-reinforced plastics (GRP), which provide similar properties under a lighter weight and a lower cost condition. Nonetheless, their environmental footprint performance depends largely on activities involved during their life cycle. Therefore, the findings are presented in two parts: Part 1 and 2. This paper is about Part 1, which presents the environmental footprint for the cradle-to-grave of one linear metre I-beam that is made from two materials namely stainless steel (316) and GRP. Part 2, which will be submitted as a separate paper, has specifically analysed their environmental and economic impacts for the different cradle-to-gate scenarios and the potential carbon tax.

Materials and methods

Materials that were used to compare the environmental footprint of an I-beam are GRP and stainless steel (316). Their cradle-to-grave activities included raw material extraction, supplier transportation, manufacturing process, distribution, disposal transportation and process. Input data were based on data provided by a composites company in Australia, the Ecoinvent 2.2 and Australian data 2007 databases. The World ReCiPe midpoint and endpoint methods were used to assess the environmental footprint.

Results and discussion

The environmental footprint results for the cradle-to-grave of the I-beams are presented as a contribution percentage of the single score unit in the total and damage category levels which produced by the endpoint method. The characteristic and normalisation results were also generated for all impact categories by the midpoint method.

Conclusions

Overall, the cradle-to-grave results show that the composite I-beam produces 20 % less environmental footprint than that of the stainless steel I-beam. The human health damage category is affected the most due to the main contribution from the material stage. The cradle-to-gate results are contributed by 90 % from raw material extraction, 7 % from the manufacturing process and 3 % from the supplier transportation. In terms of the characteristic results, the composite I-beam produces less environmental impact in most of the impact categories except for the climate change, photochemical oxidant formation, terrestrial acidification, marine eutrophication, natural land transformation and fossil depletion. Therefore, the influential parameters of these impact categories are investigated further in Part 2 where the environmental footprint and economic impact are estimated for different cradle-to-gate scenarios of the I-beams.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ashby MF (2009) Materials and the environment: eco-informed material choice. Butterworth–Heinemann, Burlington Ashby MF (2009) Materials and the environment: eco-informed material choice. Butterworth–Heinemann, Burlington
Zurück zum Zitat Basbagill JP, Lepech MD, Ali SM (2012) Human health impact as a boundary selection criterion in the life cycle assessment of pultruded fiber reinforced polymer composite materials. J Ind Ecol 16(2):266–275CrossRef Basbagill JP, Lepech MD, Ali SM (2012) Human health impact as a boundary selection criterion in the life cycle assessment of pultruded fiber reinforced polymer composite materials. J Ind Ecol 16(2):266–275CrossRef
Zurück zum Zitat Belboom S, Renzoni R, Verjans B, Léonard A, Germain A (2011) A life cycle assessment of injectable drug primary packaging: comparing the traditional process in glass vials with the closed vial technology (polymer vials). Int J Life Cycle Assess 16:159–167CrossRef Belboom S, Renzoni R, Verjans B, Léonard A, Germain A (2011) A life cycle assessment of injectable drug primary packaging: comparing the traditional process in glass vials with the closed vial technology (polymer vials). Int J Life Cycle Assess 16:159–167CrossRef
Zurück zum Zitat Bribián IZ, Usón AA, Scarpellini S (2009) Life cycle assessment in buildings: state-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ 44(12):2510–2520CrossRef Bribián IZ, Usón AA, Scarpellini S (2009) Life cycle assessment in buildings: state-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ 44(12):2510–2520CrossRef
Zurück zum Zitat Bribián IZ, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46:1133–1140CrossRef Bribián IZ, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46:1133–1140CrossRef
Zurück zum Zitat Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Hischier R, Hellweg S, Nemecek T, Rebitzer G, Spielmann M (2007) Overview and methodology. Final report ecoinvent data v2.0, No. 1. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Hischier R, Hellweg S, Nemecek T, Rebitzer G, Spielmann M (2007) Overview and methodology. Final report ecoinvent data v2.0, No. 1. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland
Zurück zum Zitat Goedkoop M, Heijungs R, Huijbregts M, Schryver AD, Struijs J, Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. VROM, The Hague Goedkoop M, Heijungs R, Huijbregts M, Schryver AD, Struijs J, Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. VROM, The Hague
Zurück zum Zitat Grant T (2010) Australasian SimaPro Database Instructions. Life Cycle Strategies Pty., Ltd., Melbourne Grant T (2010) Australasian SimaPro Database Instructions. Life Cycle Strategies Pty., Ltd., Melbourne
Zurück zum Zitat Hansen K, Zenobia K (2011) Civil engineer's handbook of professional practice Hansen K, Zenobia K (2011) Civil engineer's handbook of professional practice
Zurück zum Zitat International Energy Agency (2010) CO2 Emissions from Fuel Combustion Highlights, 2010th edn. IEA, Paris International Energy Agency (2010) CO2 Emissions from Fuel Combustion Highlights, 2010th edn. IEA, Paris
Zurück zum Zitat International Energy Agency (2011) CO2 Emissions from Fuel Combustion Highlights, 2011th edn. IEA, Paris International Energy Agency (2011) CO2 Emissions from Fuel Combustion Highlights, 2011th edn. IEA, Paris
Zurück zum Zitat ISO 14040 (2006) Environmental management—life cycle assessment—principles and framework. ISO, Geneva ISO 14040 (2006) Environmental management—life cycle assessment—principles and framework. ISO, Geneva
Zurück zum Zitat Jones CI, McManus MC (2010) Life-cycle assessment of 11 kV electrical overhead lines and underground cables. J Clean Prod 18:1464–1477CrossRef Jones CI, McManus MC (2010) Life-cycle assessment of 11 kV electrical overhead lines and underground cables. J Clean Prod 18:1464–1477CrossRef
Zurück zum Zitat Kara S, Manmek S, Herrmann C (2010) Global manufacturing & the embodied energy of products. CIRP Ann Manuf Technol 59:29–32CrossRef Kara S, Manmek S, Herrmann C (2010) Global manufacturing & the embodied energy of products. CIRP Ann Manuf Technol 59:29–32CrossRef
Zurück zum Zitat Khasreen M, Banfill P, Menzies G (2009) Life-cycle assessment and the environmental impact of buildings: a review. Sustainability 1(3):674–701CrossRef Khasreen M, Banfill P, Menzies G (2009) Life-cycle assessment and the environmental impact of buildings: a review. Sustainability 1(3):674–701CrossRef
Zurück zum Zitat Kosareo L, Ries R (2007) Comparative environmental life cycle assessment of green roofs. Build Environ 42(7):2606–2613CrossRef Kosareo L, Ries R (2007) Comparative environmental life cycle assessment of green roofs. Build Environ 42(7):2606–2613CrossRef
Zurück zum Zitat La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A Appl Sci Manuf 42(6):579–588CrossRef La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A Appl Sci Manuf 42(6):579–588CrossRef
Zurück zum Zitat Lawson B (1996) Building materials energy and the environment. The Royal Australian Institute of Architects, Canberra Lawson B (1996) Building materials energy and the environment. The Royal Australian Institute of Architects, Canberra
Zurück zum Zitat Mayyas AT, Qattawi A, Mayyas AR, Omar MA (2012) Life cycle assessment-based selection for a sustainable lightweight body-in-white design. Energy 39(1):412–425CrossRef Mayyas AT, Qattawi A, Mayyas AR, Omar MA (2012) Life cycle assessment-based selection for a sustainable lightweight body-in-white design. Energy 39(1):412–425CrossRef
Zurück zum Zitat Nebel B, Zimmer B, Wegener G (2006) Life cycle assessment of wood floor coverings. A representative study for the German flooring industry. In J Life Cycle Assess 11(3):172–182CrossRef Nebel B, Zimmer B, Wegener G (2006) Life cycle assessment of wood floor coverings. A representative study for the German flooring industry. In J Life Cycle Assess 11(3):172–182CrossRef
Zurück zum Zitat O'Brien-Bernini F (2011) Composites and sustainability—when green becomes golden. Reinf Plast 55(6):27–29CrossRef O'Brien-Bernini F (2011) Composites and sustainability—when green becomes golden. Reinf Plast 55(6):27–29CrossRef
Zurück zum Zitat Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23(1):28–39CrossRef Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23(1):28–39CrossRef
Zurück zum Zitat Ortiz O, Pasqualino JC, Díez G, Castells F (2010) The environmental impact of the construction phase: an application to composite walls from a life cycle perspective. Resour Conserv Recycl 54(11):832–840CrossRef Ortiz O, Pasqualino JC, Díez G, Castells F (2010) The environmental impact of the construction phase: an application to composite walls from a life cycle perspective. Resour Conserv Recycl 54(11):832–840CrossRef
Zurück zum Zitat Prasara J, Grant T (2011) Comparative life cycle assessment of uses of rice husk for energy purposes. Int J Life Cycle Assess 16:493–502CrossRef Prasara J, Grant T (2011) Comparative life cycle assessment of uses of rice husk for energy purposes. Int J Life Cycle Assess 16:493–502CrossRef
Zurück zum Zitat PRe Concultants BV (2008) SimaPro 7 User's Manual. PRe Consultants BV, the Netherlands PRe Concultants BV (2008) SimaPro 7 User's Manual. PRe Consultants BV, the Netherlands
Zurück zum Zitat Rajendran S, Scelsi L, Hodzic A, Soutis C, Al-Maadeed MA (2012) Environmental impact assessment of composites containing recycled plastics. Resour Conserv Recycl 60:131–139CrossRef Rajendran S, Scelsi L, Hodzic A, Soutis C, Al-Maadeed MA (2012) Environmental impact assessment of composites containing recycled plastics. Resour Conserv Recycl 60:131–139CrossRef
Zurück zum Zitat Ramesh T, Ravi P, Shukla KK (2010) Life cycle energy analysis of buildings: an overview. Energ Build 42:1592–1600CrossRef Ramesh T, Ravi P, Shukla KK (2010) Life cycle energy analysis of buildings: an overview. Energ Build 42:1592–1600CrossRef
Zurück zum Zitat Sharma A, Saxena A, Sethi M, Shree V (2011) Life cycle assessment of buildings: a review. Renew Sust Energ Rev 15(1):871–875CrossRef Sharma A, Saxena A, Sethi M, Shree V (2011) Life cycle assessment of buildings: a review. Renew Sust Energ Rev 15(1):871–875CrossRef
Zurück zum Zitat Simitses G, Hodges DH (2005) Fundamentals of structural stability. Butterworth-Heinemann, the United States of America Simitses G, Hodges DH (2005) Fundamentals of structural stability. Butterworth-Heinemann, the United States of America
Zurück zum Zitat Simões CL, Pinto LMC, Bernardo CA (2012) Modelling the environmental performance of composite products: Benchmark with traditional materials. Mater Des 39:121–130CrossRef Simões CL, Pinto LMC, Bernardo CA (2012) Modelling the environmental performance of composite products: Benchmark with traditional materials. Mater Des 39:121–130CrossRef
Zurück zum Zitat Song YS, Youn JR, Gutowski TG (2009) Life cycle energy analysis of fiber-reinforced composites. Compos A Appl Sci Manuf 40(8):1257–1265CrossRef Song YS, Youn JR, Gutowski TG (2009) Life cycle energy analysis of fiber-reinforced composites. Compos A Appl Sci Manuf 40(8):1257–1265CrossRef
Zurück zum Zitat Tarantini M, Loprieno AD, Porta PL (2011) A life cycle approach to green public procurement of building materials and elements: a case study on windows. Energ 36(5):2473–2482CrossRef Tarantini M, Loprieno AD, Porta PL (2011) A life cycle approach to green public procurement of building materials and elements: a case study on windows. Energ 36(5):2473–2482CrossRef
Zurück zum Zitat Torgal FP, Jalali S (2011) Eco-efficient construction and building materials. Springer, London Torgal FP, Jalali S (2011) Eco-efficient construction and building materials. Springer, London
Metadaten
Titel
LCA case study. Part 1: cradle-to-grave environmental footprint analysis of composites and stainless steel I-beams
verfasst von
Suphunnika Ibbotson
Sami Kara
Publikationsdatum
01.01.2013
Verlag
Springer-Verlag
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 1/2013
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-012-0452-5

Weitere Artikel der Ausgabe 1/2013

The International Journal of Life Cycle Assessment 1/2013 Zur Ausgabe