Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 1/2010

01.01.2010 | LCA FOR AGRICULTURE PRACTICES AND BIOBASED INDUSTRIAL PRODUCTS

LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass

verfasst von: Francesco Cherubini, Gerfried Jungmeier

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 1/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background, aim, and scope

The availability of fossil resources is predicted to decrease in the near future: they are a non-renewable source, they cause environmental concerns, and they are subjected to price instability. Utilization of biomass as raw material in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, as well as for mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy, and biochemicals from switchgrass, a lignocellulosic crop. Results are compared with a fossil reference system producing the same products/services from fossil sources.

Materials and methods

The biorefinery system is investigated using a Life Cycle Assessment approach, which takes into account all the input and output flows occurring along the production chain. This paper elaborates on methodological key issues like land use change effects and soil N2O emissions, whose influence on final outcomes is weighted in a sensitivity analysis. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment has a focus on greenhouse gas (GHG) emissions and cumulative primary energy demand (distinguished into fossil and renewable), but other environmental impact categories (e.g., abiotic depletion, eutrophication, etc.) are assessed as well.

Results

The use of switchgrass in a biorefinery offsets GHG emissions and reduces fossil energy demand: GHG emissions are decreased by 79% and about 80% of non-renewable energy is saved. Soil C sequestration is responsible for a large GHG benefit (65 kt CO2-eq/a, for the first 20 years), while switchgrass production is the most important contributor to total GHG emissions of the system. If compared with the fossil reference system, the biorefinery system releases more N2O emissions, while both CO2 and CH4 emissions are reduced. The investigation of the other impact categories revealed that the biorefinery has higher impacts in two categories: acidification and eutrophication.

Discussion

Results are mainly affected by raw material (i.e., switchgrass) production and land use change effects. Steps which mainly influence the production of switchgrass are soil N2O emissions, manufacture of fertilizers (especially those nitrogen-based), processing (i.e., pelletizing and drying), and transport. Even if the biorefinery chain has higher primary energy demand than the fossil reference system, it is mainly based on renewable energy (i.e., the energy content of the feedstock): the provision of biomass with sustainable practices is then a crucial point to ensure a renewable energy supply to biorefineries.

Conclusions

This biorefinery system is an effective option for mitigating climate change, reducing dependence on imported fossil fuels, and enhancing cleaner production chains based on local and renewable resources. However, this assessment evidences that determination of the real GHG and energy balance (and all other environmental impacts in general) is complex, and a certain degree of uncertainty is always present in final results. Ranges in final results can be even more widened by applying different combinations of biomass feedstocks, conversion routes, fuels, end-use applications, and methodological assumptions.

Recommendations and perspectives

This study demonstrated that the perennial grass switchgrass enhances carbon sequestration in soils if established on set-aside land, thus, considerably increasing the GHG savings of the system for the first 20 years after crop establishment. Given constraints in land resources and competition with food, feed, and fiber production, high biomass yields are extremely important in achieving high GHG emission savings, although use of chemical fertilizers to enhance plant growth can reduce the savings. Some strategies, aiming at simultaneously maintaining crop yield and reduce N fertilization application through alternative management, can be adopted. However, even if a reduction in GHG emissions is achieved, it should not be disregarded that additional environmental impacts (like acidification and eutrophication) may be caused. This aspect cannot be ignored by policy makers, even if they have climate change mitigation objectives as main goal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alzate CAC, Toro OJS (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31:2447–2459CrossRef Alzate CAC, Toro OJS (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31:2447–2459CrossRef
Zurück zum Zitat Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 11:2273–2282CrossRef Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 11:2273–2282CrossRef
Zurück zum Zitat Berglund M, Börjesson P (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenerg 30(2006):254–266CrossRef Berglund M, Börjesson P (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenerg 30(2006):254–266CrossRef
Zurück zum Zitat von Blottnitz H, Curran MA (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Cleaner Prod 15:607–619CrossRef von Blottnitz H, Curran MA (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Cleaner Prod 15:607–619CrossRef
Zurück zum Zitat Bullard M, Metcalfe P (2001) Estimating the energy requirements and CO2 emissions from production of the perennial grasses miscanthus, switchgrass and reed canary grass. ETSU Report Number B/U1/00645/REP. DTI/Pub URN 01/797, Contractor ADAS Consulting Ltd Bullard M, Metcalfe P (2001) Estimating the energy requirements and CO2 emissions from production of the perennial grasses miscanthus, switchgrass and reed canary grass. ETSU Report Number B/U1/00645/REP. DTI/Pub URN 01/797, Contractor ADAS Consulting Ltd
Zurück zum Zitat CAST—Council for Agricultural Science and Technology (2004) Climate change and greenhouse gas mitigation: challenges and opportunities for agriculture. CAST, Ames, IA, p 120 CAST—Council for Agricultural Science and Technology (2004) Climate change and greenhouse gas mitigation: challenges and opportunities for agriculture. CAST, Ames, IA, p 120
Zurück zum Zitat Cherubini F, Ulgiati S (2009) Crop residues as raw materials for biorefinery systems - A LCA case study. Appl Energy 53(8):434–447 Cherubini F, Ulgiati S (2009) Crop residues as raw materials for biorefinery systems - A LCA case study. Appl Energy 53(8):434–447
Zurück zum Zitat Cherubini F, Bird N, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009a) Energy and GHG-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendation. Resourc Conserv Recy 53:434–447CrossRef Cherubini F, Bird N, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009a) Energy and GHG-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendation. Resourc Conserv Recy 53:434–447CrossRef
Zurück zum Zitat Cherubini F, Jungmeier G, Mandl M, Philips C, Wellisch M, Jørgensen H, Skiadas I, Boniface L, Dohy M, Pouet JC, Willke T, Walsh P, van Ree R, de Jong E (2009b) IEA Bioenergy Task 42: Report on Participating Countries. Document of IEA Bioenergy Task 42 ‘Biorefineries’, www.biorefinery.nl/ieabioenergy-task42/ Cherubini F, Jungmeier G, Mandl M, Philips C, Wellisch M, Jørgensen H, Skiadas I, Boniface L, Dohy M, Pouet JC, Willke T, Walsh P, van Ree R, de Jong E (2009b) IEA Bioenergy Task 42: Report on Participating Countries. Document of IEA Bioenergy Task 42 ‘Biorefineries’, www.​biorefinery.​nl/​ieabioenergy-task42/​
Zurück zum Zitat Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, van Ree R, de Jong E (2009c) Towards a classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining 3(5):534–546 Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, van Ree R, de Jong E (2009c) Towards a classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining 3(5):534–546
Zurück zum Zitat Conant RT, Paustian K, Elliot ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355CrossRef Conant RT, Paustian K, Elliot ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355CrossRef
Zurück zum Zitat Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205 Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205
Zurück zum Zitat De Feber MAPC, Gielen DJ (2000) Biomass for greenhouse gas emission reduction, Task 7: Energy Technology Characterization. ECN-C-99-078 De Feber MAPC, Gielen DJ (2000) Biomass for greenhouse gas emission reduction, Task 7: Energy Technology Characterization. ECN-C-99-078
Zurück zum Zitat Delucchi MA, Lipman T (2003) A Lifecycle Emissions Model (LEM): lifecycle emissions from transportation fuels, motor vehicles, transportation modes, electricity use, heating and cooking fuels, and materials. Appendix C: emissions related to cultivation and fertilizer use. Institute of Transportation Studies, University of California, Davis, CA, USA Delucchi MA, Lipman T (2003) A Lifecycle Emissions Model (LEM): lifecycle emissions from transportation fuels, motor vehicles, transportation modes, electricity use, heating and cooking fuels, and materials. Appendix C: emissions related to cultivation and fertilizer use. Institute of Transportation Studies, University of California, Davis, CA, USA
Zurück zum Zitat Downing M, Walsh M, McLaughlin S (1995) Perennial grasses for energy and conservation: evaluating some ecological, agriculture and economic issues. Environmental Enhancement Through Agriculture, Conference Proceedings, Boston Massacusetts Downing M, Walsh M, McLaughlin S (1995) Perennial grasses for energy and conservation: evaluating some ecological, agriculture and economic issues. Environmental Enhancement Through Agriculture, Conference Proceedings, Boston Massacusetts
Zurück zum Zitat EERE (2009) Biomass Feedstock Composition and Property Database (biomass sample type: Switchgrass Alamo Whole Plant #94). Biomass Program, U.S. Department of Energy, Energy Efficiency and Renewable Energy, http://www1.eere.energy.gov/biomass/feedstock_databases.html (Accessed 07 June 2009) EERE (2009) Biomass Feedstock Composition and Property Database (biomass sample type: Switchgrass Alamo Whole Plant #94). Biomass Program, U.S. Department of Energy, Energy Efficiency and Renewable Energy, http://​www1.​eere.​energy.​gov/​biomass/feedstock_databases.html (Accessed 07 June 2009)
Zurück zum Zitat Elsayed MA, Matthews R, Mortimer ND (2003) Carbon and energy balances for a range of biofuels options. Sheffield Hallam University/Resources Research Unit, Sheffield UK Elsayed MA, Matthews R, Mortimer ND (2003) Carbon and energy balances for a range of biofuels options. Sheffield Hallam University/Resources Research Unit, Sheffield UK
Zurück zum Zitat EU (2006) Biofuels in the European Union—a vision for 2030 and beyond. Final report of the Biofuels Research Advisory Council, June 2006 EU (2006) Biofuels in the European Union—a vision for 2030 and beyond. Final report of the Biofuels Research Advisory Council, June 2006
Zurück zum Zitat Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRef Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRef
Zurück zum Zitat Franck AB, Berdahl JD, Hanson JD, Liebig MA, Johnson HA (2004) Biomass and carbon partitioning in switchgrass. Crop Sci 44:1391–1396 Franck AB, Berdahl JD, Hanson JD, Liebig MA, Johnson HA (2004) Biomass and carbon partitioning in switchgrass. Crop Sci 44:1391–1396
Zurück zum Zitat Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles, past, present and future. Biogeochemistry 70:153–226CrossRef Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles, past, present and future. Biogeochemistry 70:153–226CrossRef
Zurück zum Zitat Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energ 32(4):649–661CrossRef Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energ 32(4):649–661CrossRef
Zurück zum Zitat Garten CT, Wullschleger SD (2000) Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis. J Environ Qual 29:645–653CrossRef Garten CT, Wullschleger SD (2000) Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis. J Environ Qual 29:645–653CrossRef
Zurück zum Zitat Gebhart DL, Johnson HB, Mayeux HS, Polley HW (1994) The CRP increases soil organic carbon. J Soil Water Conserv 49:488–492 Gebhart DL, Johnson HB, Mayeux HS, Polley HW (1994) The CRP increases soil organic carbon. J Soil Water Conserv 49:488–492
Zurück zum Zitat Halleux H, Lassaux S, Renzoni R, Germain A (2008) Comparative Life Cycle Assessment of two biofuels: ethanol from sugar beet and Rapeseed Methyl Ester. Int J Life Cycle Assess 13(3):184–190CrossRef Halleux H, Lassaux S, Renzoni R, Germain A (2008) Comparative Life Cycle Assessment of two biofuels: ethanol from sugar beet and Rapeseed Methyl Ester. Int J Life Cycle Assess 13(3):184–190CrossRef
Zurück zum Zitat Hamelinck NC, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28:384–410CrossRef Hamelinck NC, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28:384–410CrossRef
Zurück zum Zitat Hammerschlag R (2006) Ethanol energy return on investment: a survey of the literature 1990-present. Environ Sci Technol 40(6):1744–1750CrossRef Hammerschlag R (2006) Ethanol energy return on investment: a survey of the literature 1990-present. Environ Sci Technol 40(6):1744–1750CrossRef
Zurück zum Zitat Heijungs R et al (1992) Environmental life cycle assessment of products, Guide. October 1992 CML. Leiden, The Netherlands NOH report 9266 Heijungs R et al (1992) Environmental life cycle assessment of products, Guide. October 1992 CML. Leiden, The Netherlands NOH report 9266
Zurück zum Zitat IPCC (2006) Guidelines for national greenhouse gas inventories. Volume 4: Agriculture, forestry and other land use IPCC (2006) Guidelines for national greenhouse gas inventories. Volume 4: Agriculture, forestry and other land use
Zurück zum Zitat IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Cambridge: Cambridge University Press IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Cambridge: Cambridge University Press
Zurück zum Zitat Jungmeier G, Lingitz A, Spitzer J, Hofbauer H and Fürnsinn S (2007) Wood to biofuels: feasibility study for a biofuel plant in the Austrian province of Styria. Proceedings of the 15th European Biomass Conference and Exhibition—From Research to Market Deployment, Berlin, 7–11 May 2007 Jungmeier G, Lingitz A, Spitzer J, Hofbauer H and Fürnsinn S (2007) Wood to biofuels: feasibility study for a biofuel plant in the Austrian province of Styria. Proceedings of the 15th European Biomass Conference and Exhibition—From Research to Market Deployment, Berlin, 7–11 May 2007
Zurück zum Zitat Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenerg 29:426–439CrossRef Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenerg 29:426–439CrossRef
Zurück zum Zitat Lal R, Kimble LM, Follet RF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, MI Lal R, Kimble LM, Follet RF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, MI
Zurück zum Zitat Larson E (2005) A review of LCA studies on liquid biofuels for the transport sector. Scientific and Technical Advisory Panel of the Global Environment Facility (STAP) workshop on Liquid Biofuels, 29 August to 1 September 2005. New Delhi, India Larson E (2005) A review of LCA studies on liquid biofuels for the transport sector. Scientific and Technical Advisory Panel of the Global Environment Facility (STAP) workshop on Liquid Biofuels, 29 August to 1 September 2005. New Delhi, India
Zurück zum Zitat Lynd LR (1996) Overview and evaluation of fuel ethanol from celllulosic bomass: technology, economics, the environment, and policy. Ann Rev Energy Environ 21:403–465CrossRef Lynd LR (1996) Overview and evaluation of fuel ethanol from celllulosic bomass: technology, economics, the environment, and policy. Ann Rev Energy Environ 21:403–465CrossRef
Zurück zum Zitat McLaughlin SB, de la Torre Ugarte DG, JrCT C, Lynd LR, Sanderson MA, Tolbert VR, Wolf DD (2002) High value renewable energy from prairie grasses. Environ Sci Technol 36:2122–2129CrossRef McLaughlin SB, de la Torre Ugarte DG, JrCT C, Lynd LR, Sanderson MA, Tolbert VR, Wolf DD (2002) High value renewable energy from prairie grasses. Environ Sci Technol 36:2122–2129CrossRef
Zurück zum Zitat Meister JJ (2002) Modification of lignin. J Macromol Sci-Pol R 42(2):235–289 Meister JJ (2002) Modification of lignin. J Macromol Sci-Pol R 42(2):235–289
Zurück zum Zitat Mitchell R, Vogel KP, Sarath G (2008) Managing and enhancing switchgrass as a bioenergy feedstock. Biofuels Bioprod Bior 2(6):530–539CrossRef Mitchell R, Vogel KP, Sarath G (2008) Managing and enhancing switchgrass as a bioenergy feedstock. Biofuels Bioprod Bior 2(6):530–539CrossRef
Zurück zum Zitat Mulkey VR, Owens VN, Lee DK (2006) Management of switchgrass-dominated Conservation Reserve Program lands for biomass production in South Dakota. Crop Sci 46:712–720CrossRef Mulkey VR, Owens VN, Lee DK (2006) Management of switchgrass-dominated Conservation Reserve Program lands for biomass production in South Dakota. Crop Sci 46:712–720CrossRef
Zurück zum Zitat Narodoslawsky M, Niederl-Schmidinger A, Halasz L (2008) Utilising renewable resources economically: new challenges and chances for process development. J Cleaner Prod 16(2):164–170CrossRef Narodoslawsky M, Niederl-Schmidinger A, Halasz L (2008) Utilising renewable resources economically: new challenges and chances for process development. J Cleaner Prod 16(2):164–170CrossRef
Zurück zum Zitat Ojima DS, Valentine DW, Mosier AR, Parton WJ, Schimel DS (1993) Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere 26(1–4):675–685CrossRef Ojima DS, Valentine DW, Mosier AR, Parton WJ, Schimel DS (1993) Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere 26(1–4):675–685CrossRef
Zurück zum Zitat Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification and II: inhibitors and mechanisms of inhibition. Bioresource Technol 74(1):17–33CrossRef Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification and II: inhibitors and mechanisms of inhibition. Bioresource Technol 74(1):17–33CrossRef
Zurück zum Zitat Paustian K, Antle JM, Sheehan J, Paul EA (2006) Agriculture's role in greenhouse gas mitigation. Pew Center on Global Climate Change, Arlington (VA) Canada, September 2006 Paustian K, Antle JM, Sheehan J, Paul EA (2006) Agriculture's role in greenhouse gas mitigation. Pew Center on Global Climate Change, Arlington (VA) Canada, September 2006
Zurück zum Zitat Pimentel D, Patzek T (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76CrossRef Pimentel D, Patzek T (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76CrossRef
Zurück zum Zitat Prather M, Ehhalt D et al (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001. The Scientific Basis, Cambridge University Press, Cambridge UK, pp 239–287 Prather M, Ehhalt D et al (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001. The Scientific Basis, Cambridge University Press, Cambridge UK, pp 239–287
Zurück zum Zitat Punter G, Rickeard D, Larivé JF, Edwards R, Mortimer N, Horne R, Bauen A, Woods J (2004) Well-to-wheel evaluation for production of ethanol from wheat. A report by the LowCVP fuels working group, WTW sub-group, FWG-P-04-024, October 2004 Punter G, Rickeard D, Larivé JF, Edwards R, Mortimer N, Horne R, Bauen A, Woods J (2004) Well-to-wheel evaluation for production of ethanol from wheat. A report by the LowCVP fuels working group, WTW sub-group, FWG-P-04-024, October 2004
Zurück zum Zitat Romano RT, Zhang R (2008) Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor. Bioresource Technol 99(3):631–637CrossRef Romano RT, Zhang R (2008) Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor. Bioresource Technol 99(3):631–637CrossRef
Zurück zum Zitat Samson R, Mani S, Boddey R, Sokhansanj S, Quesada D, Urquiaga S, Reis V, Lem CH (2005) The potential of C4 perennial grasses for developing a global BIO-HEAT industry. Critical Rev Plant Sci 24:461–495CrossRef Samson R, Mani S, Boddey R, Sokhansanj S, Quesada D, Urquiaga S, Reis V, Lem CH (2005) The potential of C4 perennial grasses for developing a global BIO-HEAT industry. Critical Rev Plant Sci 24:461–495CrossRef
Zurück zum Zitat Sanderson MA, Jones RM, McFarland MJ, Stroup J, Reed RL, Muir JP (2001) Nutrient movement and removal in a switchgrass biomass-filter strip system treated with dairy manure. J Environ Qual 30:210–216CrossRef Sanderson MA, Jones RM, McFarland MJ, Stroup J, Reed RL, Muir JP (2001) Nutrient movement and removal in a switchgrass biomass-filter strip system treated with dairy manure. J Environ Qual 30:210–216CrossRef
Zurück zum Zitat Scholze B (2002) Long-term stability, catalytic upgrading, and application of pyrolysis Ioils—improving the properties of a potential substitute for fossil fuels. Hamburg University, PhD Dissertation Scholze B (2002) Long-term stability, catalytic upgrading, and application of pyrolysis Ioils—improving the properties of a potential substitute for fossil fuels. Hamburg University, PhD Dissertation
Zurück zum Zitat Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240CrossRef Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240CrossRef
Zurück zum Zitat Senneca O (2007) Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol 88(1):87–97CrossRef Senneca O (2007) Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol 88(1):87–97CrossRef
Zurück zum Zitat Smeets EMW, Lewandowski IM, Faij APC (2009) The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew Sustain Energy Rev 13(6–7):1230–1245CrossRef Smeets EMW, Lewandowski IM, Faij APC (2009) The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew Sustain Energy Rev 13(6–7):1230–1245CrossRef
Zurück zum Zitat Sokhansanj S, Mani S, Turhollow A, Kumar A, Bransby D, Lynd L, Laser M (2009) Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.)—current technology and envisioning a mature technology. Biofuels Bioproducts Biore 3(2):124–141CrossRef Sokhansanj S, Mani S, Turhollow A, Kumar A, Bransby D, Lynd L, Laser M (2009) Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.)—current technology and envisioning a mature technology. Biofuels Bioproducts Biore 3(2):124–141CrossRef
Zurück zum Zitat Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data modelling of global annual emissions. Nutr Cycl Agroecosys 74:207–228CrossRef Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data modelling of global annual emissions. Nutr Cycl Agroecosys 74:207–228CrossRef
Zurück zum Zitat Stoeglehner G, Narodoslawsky M (2009) How sustainable are biofuels? Answers and further questions arising from an ecological footprint perspective. Bioresource Technol 16:3825–3830CrossRef Stoeglehner G, Narodoslawsky M (2009) How sustainable are biofuels? Answers and further questions arising from an ecological footprint perspective. Bioresource Technol 16:3825–3830CrossRef
Zurück zum Zitat Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83(1):1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83(1):1–11CrossRef
Zurück zum Zitat Thustos P, Willison TW, Baker JC, Murphy DV, Pavlikova D, Goulding KWT, Powlson DS (1998) Short-term effects of nitrogen on methane oxidation in soils. Biol Fert Soils 28:64–70CrossRef Thustos P, Willison TW, Baker JC, Murphy DV, Pavlikova D, Goulding KWT, Powlson DS (1998) Short-term effects of nitrogen on methane oxidation in soils. Biol Fert Soils 28:64–70CrossRef
Zurück zum Zitat Uihlein A, Schebeck L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenergy 33(5):793–802CrossRef Uihlein A, Schebeck L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenergy 33(5):793–802CrossRef
Zurück zum Zitat Zah R, Boni H, Gauch M, Hischier R, Lehmann M, Wager P (2007) Life Cycle Assessment of energy products: Environmental assessment of biofuels. Final Report, EMPA—Technology and society Lab, Auftrag des Bundesamtes für Energie, des Bundesamtes für Umwelt und des Bundesamtes für Landwirtschaft, Bern, 2007 Zah R, Boni H, Gauch M, Hischier R, Lehmann M, Wager P (2007) Life Cycle Assessment of energy products: Environmental assessment of biofuels. Final Report, EMPA—Technology and society Lab, Auftrag des Bundesamtes für Energie, des Bundesamtes für Umwelt und des Bundesamtes für Landwirtschaft, Bern, 2007
Zurück zum Zitat Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in Soothern Quebec. Agr Ecosys Eviron 86:135–144CrossRef Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in Soothern Quebec. Agr Ecosys Eviron 86:135–144CrossRef
Zurück zum Zitat Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energ Convers Manage 48:87–92CrossRef Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energ Convers Manage 48:87–92CrossRef
Metadaten
Titel
LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass
verfasst von
Francesco Cherubini
Gerfried Jungmeier
Publikationsdatum
01.01.2010
Verlag
Springer-Verlag
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 1/2010
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-009-0124-2

Weitere Artikel der Ausgabe 1/2010

The International Journal of Life Cycle Assessment 1/2010 Zur Ausgabe