Skip to main content
Erschienen in: Machine Vision and Applications 1/2021

01.02.2021 | Original Paper

Learning an end-to-end spatial grasp generation and refinement algorithm from simulation

verfasst von: Peiyuan Ni, Wenguang Zhang, Xiaoxiao Zhu, Qixin Cao

Erschienen in: Machine Vision and Applications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Novel object grasping is an important technology for robot manipulation in unstructured environments. For most of current works, a grasp sampling process is required to obtain grasp candidates, combined with a local feature extractor using deep learning. However, this pipeline is time–cost, especially when grasp points are sparse such as at the edge of a bowl. To tackle this problem, our algorithm takes the whole sparse point clouds as the input and requires no sampling or search process. Our work is combined with two steps. The first step is to predict poses, categories and scores (qualities) based on a SPH3D-GCN network. The second step is an iterative grasp pose refinement, which is to refine the best grasp generated in the first step. The whole weight sizes for these two steps are only about 0.81M and 0.52M, which takes about 73 ms for a whole prediction process including an iterative grasp pose refinement using a GeForce 840M GPU. Moreover, to generate training data of multi-object scene, a single-object dataset (79 objects from YCB object set, 23.7k grasps) and a multi-object dataset (20k point clouds with annotations and masks) combined with thin structures grasp planning are generated. Our experiment shows our work gets 76.67% success rate and 94.44% completion rate, which performs better than current state-of-the-art works.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis—a survey. IEEE Trans. Robot. 30, 289–309 (2014)CrossRef Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis—a survey. IEEE Trans. Robot. 30, 289–309 (2014)CrossRef
2.
Zurück zum Zitat Zeng, A., Yu, K.-T., Song, S., Suo, D., Walker Jr, E., Rodriguez, A., Xiao, J.: Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: IEEE International Conference on Robotics and Automation (ICRA) (2017) Zeng, A., Yu, K.-T., Song, S., Suo, D., Walker Jr, E., Rodriguez, A., Xiao, J.: Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: IEEE International Conference on Robotics and Automation (ICRA) (2017)
3.
5.
Zurück zum Zitat Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)CrossRef Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)CrossRef
6.
Zurück zum Zitat Mahler, J., et al.: Learning ambidextrous robot grasping policies. Sci. Robot. 4(26), eaau4984 (2019)CrossRef Mahler, J., et al.: Learning ambidextrous robot grasping policies. Sci. Robot. 4(26), eaau4984 (2019)CrossRef
7.
Zurück zum Zitat ten Pas, A., et al.: Grasp pose detection in point clouds. Int. J. Robot. Res. 36(13-14), 1455–1473 (2017)CrossRef ten Pas, A., et al.: Grasp pose detection in point clouds. Int. J. Robot. Res. 36(13-14), 1455–1473 (2017)CrossRef
9.
Zurück zum Zitat Qi, C.R., Su, H., Mo, K., et al.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017) Qi, C.R., Su, H., Mo, K., et al.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
10.
Zurück zum Zitat Johns, E., Leutenegger, S., Davison, A.J.: Deep learning a grasp function for grasping under gripper pose uncertainty. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4461–4468. IEEE (2016) Johns, E., Leutenegger, S., Davison, A.J.: Deep learning a grasp function for grasping under gripper pose uncertainty. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4461–4468. IEEE (2016)
12.
Zurück zum Zitat Levine, S., et al.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4–5), 421–436 (2018)CrossRef Levine, S., et al.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4–5), 421–436 (2018)CrossRef
13.
Zurück zum Zitat Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V., Levine, S.: Qt-opt: scalable deep reinforcement learning for vision-based robotic manipulation. In: Conference on Robot Learning (CoRL) (2018) Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V., Levine, S.: Qt-opt: scalable deep reinforcement learning for vision-based robotic manipulation. In: Conference on Robot Learning (CoRL) (2018)
14.
Zurück zum Zitat Zeng, A., et al.: Learning synergies between pushing and grasping with self-supervised deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2018) Zeng, A., et al.: Learning synergies between pushing and grasping with self-supervised deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2018)
15.
Zurück zum Zitat James, S., et al.: Sim-to-Real via Sim-to-Sim: Data-Efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networks. Preprint at arXiv:1812.07252 (2018) James, S., et al.: Sim-to-Real via Sim-to-Sim: Data-Efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networks. Preprint at arXiv:​1812.​07252 (2018)
16.
Zurück zum Zitat Lei, H., Akhtar, N., Mian, A.: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. arXiv preprint arXiv:1909.09287 (2019) Lei, H., Akhtar, N., Mian, A.: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. arXiv preprint arXiv:​1909.​09287 (2019)
17.
Zurück zum Zitat Mahler, J., Goldberg, K.: Learning deep policies for robot bin picking by simulating robust grasping sequences. In: Conference on Robot Learning, pp. 515–524 (2017) Mahler, J., Goldberg, K.: Learning deep policies for robot bin picking by simulating robust grasping sequences. In: Conference on Robot Learning, pp. 515–524 (2017)
18.
Zurück zum Zitat Ni, P., et al.: PointNet++ Grasping: Learning an End-to-End Spatial Grasp Generation Algorithm from Sparse Point Clouds. arXiv preprint arXiv:2003.09644 (2020) Ni, P., et al.: PointNet++ Grasping: Learning an End-to-End Spatial Grasp Generation Algorithm from Sparse Point Clouds. arXiv preprint arXiv:​2003.​09644 (2020)
19.
Zurück zum Zitat Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 2290–2295 (1992) Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 2290–2295 (1992)
20.
Zurück zum Zitat Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: using the YaleCMU-Berkeley Object and model set. IEEE Robot. Autom. Mag. 22(3), 36–52 (2015)CrossRef Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: using the YaleCMU-Berkeley Object and model set. IEEE Robot. Autom. Mag. 22(3), 36–52 (2015)CrossRef
21.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
24.
Zurück zum Zitat Ni, P., Zhang, W., Bai, W., et al.: A new approach based on two-stream CNNs for novel objects grasping in clutter. J. Intell. Robot. Syst. 2, 1–17 (2018) Ni, P., Zhang, W., Bai, W., et al.: A new approach based on two-stream CNNs for novel objects grasping in clutter. J. Intell. Robot. Syst. 2, 1–17 (2018)
25.
Zurück zum Zitat Quillen, D., Jang, E., Nachum, O., et al.: Deep reinforcement learning for vision-based robotic grasping: a simulated comparative evaluation of off-policy methods. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6284–6291. IEEE (2018) Quillen, D., Jang, E., Nachum, O., et al.: Deep reinforcement learning for vision-based robotic grasping: a simulated comparative evaluation of off-policy methods. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6284–6291. IEEE (2018)
26.
Zurück zum Zitat Ahmed, E., Saint, A., Shabayek, A.E.R., et al.: Deep learning advances on different 3D data representations: a survey. arXiv preprint arXiv:1808.01462 (2018) Ahmed, E., Saint, A., Shabayek, A.E.R., et al.: Deep learning advances on different 3D data representations: a survey. arXiv preprint arXiv:​1808.​01462 (2018)
27.
Zurück zum Zitat Choi, C., Schwarting, W., DelPreto, J., Rus, D.: Learning object grasping for soft robot hands. IEEE Robot. Autom. Lett. 3(3), 2370–2377 (2018)CrossRef Choi, C., Schwarting, W., DelPreto, J., Rus, D.: Learning object grasping for soft robot hands. IEEE Robot. Autom. Lett. 3(3), 2370–2377 (2018)CrossRef
28.
Zurück zum Zitat Rubinstein, R.Y., Ridder, A., Vaisman, R.: Fast Sequential Monte Carlo Methods for Counting and Optimization. Wiley, New York (2013)CrossRef Rubinstein, R.Y., Ridder, A., Vaisman, R.: Fast Sequential Monte Carlo Methods for Counting and Optimization. Wiley, New York (2013)CrossRef
29.
Zurück zum Zitat Campbell, D., et al.: 6-DOF GraspNet: variational grasp generation for object manipulation. In: Proceedings of the IEEE International Conference on Computer Vision (2019) Campbell, D., et al.: 6-DOF GraspNet: variational grasp generation for object manipulation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
30.
Zurück zum Zitat Qin, Y., et al.: S4G: Amodal single-view single-shot SE (3) grasp detection in cluttered scenes. In: Conference on Robot Learning (CoRL) (2019) Qin, Y., et al.: S4G: Amodal single-view single-shot SE (3) grasp detection in cluttered scenes. In: Conference on Robot Learning (CoRL) (2019)
31.
Zurück zum Zitat Kappler, D., Bohg, J., Schaal, S.: Leveraging big data for grasp planning. In: IEEE International Conference on Robotics and Automation, pp. 4304–4311 (2015) Kappler, D., Bohg, J., Schaal, S.: Leveraging big data for grasp planning. In: IEEE International Conference on Robotics and Automation, pp. 4304–4311 (2015)
32.
Zurück zum Zitat ten Pas, A., Platt, R.: Using geometry to detect grasp poses in 3D point clouds. In: Robotics Research. Springer, Cham, pp. 307–324 (2018) ten Pas, A., Platt, R.: Using geometry to detect grasp poses in 3D point clouds. In: Robotics Research. Springer, Cham, pp. 307–324 (2018)
33.
Zurück zum Zitat Mishra, B.: On the existence and synthesis of multifinger positive grips. Algorithmica (Special Issue: Robotics) 2(1–4), 541–558 (1987)MathSciNetMATH Mishra, B.: On the existence and synthesis of multifinger positive grips. Algorithmica (Special Issue: Robotics) 2(1–4), 541–558 (1987)MathSciNetMATH
34.
Zurück zum Zitat Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games, robotics and machine learning. GitHub repository (2016) Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games, robotics and machine learning. GitHub repository (2016)
35.
Zurück zum Zitat Qi, C.R., Yi, L., Su, H., et al.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017) Qi, C.R., Yi, L., Su, H., et al.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)
36.
Zurück zum Zitat Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)CrossRef Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)CrossRef
Metadaten
Titel
Learning an end-to-end spatial grasp generation and refinement algorithm from simulation
verfasst von
Peiyuan Ni
Wenguang Zhang
Xiaoxiao Zhu
Qixin Cao
Publikationsdatum
01.02.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Machine Vision and Applications / Ausgabe 1/2021
Print ISSN: 0932-8092
Elektronische ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-020-01127-9

Weitere Artikel der Ausgabe 1/2021

Machine Vision and Applications 1/2021 Zur Ausgabe