Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Learning in Biologically Inspired Neural Networks for Robot Control

verfasst von : Diana Valenzo, Dadai Astorga, Alejandra Ciria, Bruno Lara

Erschienen in: Advanced Topics on Computer Vision, Control and Robotics in Mechatronics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cognitive robotics has focused its attention on the design and construction of artificial agents that are able to perform some cognitive task autonomously through the interaction of the agent with its environment. A central issue in these fields is the process of learning. In its attempt to imitate cognition in artificial agents, cognitive robotics has implemented models of cognitive processes proposed in areas such as biology, psychology, and neurosciences. A novel methodology for the control of autonomous artificial agents is the paradigm that has been called neuro-robotics or embedded neural cultures, which aims to embody cultures of biological neurons in artificial agents. The present work is framed in this paradigm. In this chapter, simulations of an autonomous learning process of an artificial agent controlled by artificial action potential neural networks during an obstacle avoidance task were carried out. The implemented neural model was introduced by Izhikevich (2003); this model is capable of reproducing abrupt changes in the membrane potential of biological neurons, known as action potentials. The learning strategy is based on a multimodal association process where the synaptic weights of the networks are modified using a Hebbian rule. Despite the growing interest generated by artificial action potential neural networks, there is little research that implements these models for learning and the control of autonomous agents. The present work aims to fill this gap in the literature and at the same time, serve as a guideline for the design of further experiments for in vitro experiments where neural cultures are used for robot control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.CrossRef Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.CrossRef
Zurück zum Zitat Copeland, J. (2015). Artificial intelligence: A philosophical introduction. New York: Wiley. Copeland, J. (2015). Artificial intelligence: A philosophical introduction. New York: Wiley.
Zurück zum Zitat DeMarse, T., Wagenaar, D., Blau, A., & Potter, S. (2001). The neurally controlled animat: Biological brains acting with simulated bodies. Autonomous Robots, 11(3), 305–310.CrossRef DeMarse, T., Wagenaar, D., Blau, A., & Potter, S. (2001). The neurally controlled animat: Biological brains acting with simulated bodies. Autonomous Robots, 11(3), 305–310.CrossRef
Zurück zum Zitat Dreyfus, H. (1967). Why computers must have bodies in order to be intelligent. The Review of Metaphysics, 21(1), 13–32. Dreyfus, H. (1967). Why computers must have bodies in order to be intelligent. The Review of Metaphysics, 21(1), 13–32.
Zurück zum Zitat Dreyfus, H. (1972). What computers can’t do. New York: Harper & Row. Dreyfus, H. (1972). What computers can’t do. New York: Harper & Row.
Zurück zum Zitat Gaona, W., Escobar, E., Hermosillo, J., & Lara, B. (2015). Anticipation by multi-modal association through an artificial mental imagery process. Connection Science, 27(1), 68–88.CrossRef Gaona, W., Escobar, E., Hermosillo, J., & Lara, B. (2015). Anticipation by multi-modal association through an artificial mental imagery process. Connection Science, 27(1), 68–88.CrossRef
Zurück zum Zitat He, W., Chen, Y., & Yin, Z. (2016). Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Transactions on Cybernetics, 46(3), 620–629.CrossRef He, W., Chen, Y., & Yin, Z. (2016). Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Transactions on Cybernetics, 46(3), 620–629.CrossRef
Zurück zum Zitat Izhikevich, E. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10(06), 1171–1266.MathSciNetCrossRef Izhikevich, E. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10(06), 1171–1266.MathSciNetCrossRef
Zurück zum Zitat Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.MathSciNetCrossRef Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.MathSciNetCrossRef
Zurück zum Zitat Izhikevich, E. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070.CrossRef Izhikevich, E. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070.CrossRef
Zurück zum Zitat Maass, W. (1997). Networks of spiking neurons: The third generation of neural network models. Neural networks, 10(9), 1659–1671. CrossRef Maass, W. (1997). Networks of spiking neurons: The third generation of neural network models. Neural networks, 10(9), 1659–1671. CrossRef
Zurück zum Zitat Manson, N. (2004). Brains, vats, and neurally-controlled animats. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 35(2), 249–268.CrossRef Manson, N. (2004). Brains, vats, and neurally-controlled animats. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 35(2), 249–268.CrossRef
Zurück zum Zitat McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (2006). A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4), 12. McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (2006). A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4), 12.
Zurück zum Zitat McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.MathSciNetCrossRef McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.MathSciNetCrossRef
Zurück zum Zitat Mingers, J. (2001). Embodying information systems: The contribution of phenomenology. Information and Organization, 11(2), 103–128.CrossRef Mingers, J. (2001). Embodying information systems: The contribution of phenomenology. Information and Organization, 11(2), 103–128.CrossRef
Zurück zum Zitat Mokhtar, M., Halliday, D., & Tyrrell, A. (2007, August). Autonomous navigational controller inspired by the hippocampus. In IEEE International Joint Conference on Neural Networks (pp. 813–818). Mokhtar, M., Halliday, D., & Tyrrell, A. (2007, August). Autonomous navigational controller inspired by the hippocampus. In IEEE International Joint Conference on Neural Networks (pp. 813–818).
Zurück zum Zitat Moravec, H. (1984). Locomotion, vision and intelligence. In: M. Brady, & R. Paul (Eds.), Robotics research (pp. 215–224). Cambridge, MA: MIT Press. Moravec, H. (1984). Locomotion, vision and intelligence. In: M. Brady, & R. Paul (Eds.), Robotics research (pp. 215–224). Cambridge, MA: MIT Press.
Zurück zum Zitat Newell, A., & Simon, H. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.MathSciNetCrossRef Newell, A., & Simon, H. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.MathSciNetCrossRef
Zurück zum Zitat Novellino, A., D’Angelo, P., Cozzi, L., Chiappalone, M., Sanguineti, V., & Martinoia, S. (2007). Connecting neurons to a mobile robot: An in vitro bidirectional neural interface. Computational Intelligence and Neuroscience, 2007. Novellino, A., D’Angelo, P., Cozzi, L., Chiappalone, M., Sanguineti, V., & Martinoia, S. (2007). Connecting neurons to a mobile robot: An in vitro bidirectional neural interface. Computational Intelligence and Neuroscience, 2007.
Zurück zum Zitat Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. MIT Press. Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. MIT Press.
Zurück zum Zitat Potter, S. (2001). Distributed processing in cultured neuronal networks. Progress in Brain Research, 130, 49–62.CrossRef Potter, S. (2001). Distributed processing in cultured neuronal networks. Progress in Brain Research, 130, 49–62.CrossRef
Zurück zum Zitat Potter, S., & DeMarse, T. (2001). A new approach to neural cell culture for long-term studies. Journal of Neuroscience Methods, 110(1), 17–24.CrossRef Potter, S., & DeMarse, T. (2001). A new approach to neural cell culture for long-term studies. Journal of Neuroscience Methods, 110(1), 17–24.CrossRef
Zurück zum Zitat Scheier, C., Pfeifer, R., & Kunyioshi, Y. (1998). Embedded neural networks: Exploiting constraints. Neural Networks, 11(7–8), 1551–1569.CrossRef Scheier, C., Pfeifer, R., & Kunyioshi, Y. (1998). Embedded neural networks: Exploiting constraints. Neural Networks, 11(7–8), 1551–1569.CrossRef
Zurück zum Zitat Trhan, P. (2012). The application of spiking neural networks in autonomous robot control. Computing and Informatics, 29(5), 823–847.MATH Trhan, P. (2012). The application of spiking neural networks in autonomous robot control. Computing and Informatics, 29(5), 823–847.MATH
Metadaten
Titel
Learning in Biologically Inspired Neural Networks for Robot Control
verfasst von
Diana Valenzo
Dadai Astorga
Alejandra Ciria
Bruno Lara
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-77770-2_6

Neuer Inhalt