Skip to main content

2018 | OriginalPaper | Buchkapitel

Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling

verfasst von : Carlo Biffi, Ozan Oktay, Giacomo Tarroni, Wenjia Bai, Antonio De Marvao, Georgia Doumou, Martin Rajchl, Reem Bedair, Sanjay Prasad, Stuart Cook, Declan O’Regan, Daniel Rueckert

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alterations in the geometry and function of the heart define well-established causes of cardiovascular disease. However, current approaches to the diagnosis of cardiovascular diseases often rely on subjective human assessment as well as manual analysis of medical images. Both factors limit the sensitivity in quantifying complex structural and functional phenotypes. Deep learning approaches have recently achieved success for tasks such as classification or segmentation of medical images, but lack interpretability in the feature extraction and decision processes, limiting their value in clinical diagnosis. In this work, we propose a 3D convolutional generative model for automatic classification of images from patients with cardiac diseases associated with structural remodeling. The model leverages interpretable task-specific anatomic patterns learned from 3D segmentations. It further allows to visualise and quantify the learned pathology-specific remodeling patterns in the original input space of the images. This approach yields high accuracy in the categorization of healthy and hypertrophic cardiomyopathy subjects when tested on unseen MR images from our own multi-centre dataset (100%) as well on the ACDC MICCAI 2017 dataset (90%). We believe that the proposed deep learning approach is a promising step towards the development of interpretable classifiers for the medical imaging domain, which may help clinicians to improve diagnostic accuracy and enhance patient risk-stratification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cohn, J.N., Ferrari, R., Sharpe, N.: Cardiac remodeling concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35(3), 569–582 (2000)CrossRef Cohn, J.N., Ferrari, R., Sharpe, N.: Cardiac remodeling concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35(3), 569–582 (2000)CrossRef
2.
Zurück zum Zitat Yancy, C.W., et al.: 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 62(16), e147–239 (2013)CrossRef Yancy, C.W., et al.: 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 62(16), e147–239 (2013)CrossRef
3.
Zurück zum Zitat Captur, G., et al.: The embryological basis of subclinical hypertrophic cardiomyopathy. Sci. Rep. 6, 27714 (2016)CrossRef Captur, G., et al.: The embryological basis of subclinical hypertrophic cardiomyopathy. Sci. Rep. 6, 27714 (2016)CrossRef
4.
Zurück zum Zitat Authors/Task Force Members, Elliott, P.M., et al.: 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35(39), 2733–79 (2014) Authors/Task Force Members, Elliott, P.M., et al.: 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35(39), 2733–79 (2014)
5.
Zurück zum Zitat Petersen, S.E., et al.: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank-rationale, challenges and approaches. J. Cardiovasc. Magn. Reson. 15(1), 46 (2013)CrossRef Petersen, S.E., et al.: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank-rationale, challenges and approaches. J. Cardiovasc. Magn. Reson. 15(1), 46 (2013)CrossRef
6.
Zurück zum Zitat Narula, S., Shameer, K., Omar, A.M., Dudley, J.T., Sengupta, P.P.: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 68(21), 2287–2295 (2016)CrossRef Narula, S., Shameer, K., Omar, A.M., Dudley, J.T., Sengupta, P.P.: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 68(21), 2287–2295 (2016)CrossRef
8.
Zurück zum Zitat Medrano-Gracia, P., Cowan, B.R., Suinesiaputra, A., Young, A.A.: Atlas-based anatomical modeling and analysis of heart disease. Drug Discov. Today Dis. Models 1(14), 33–9 (2014)CrossRef Medrano-Gracia, P., Cowan, B.R., Suinesiaputra, A., Young, A.A.: Atlas-based anatomical modeling and analysis of heart disease. Drug Discov. Today Dis. Models 1(14), 33–9 (2014)CrossRef
9.
Zurück zum Zitat Bai, W., et al.: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. Med. Image Anal. 26(1), 133–45 (2015)CrossRef Bai, W., et al.: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. Med. Image Anal. 26(1), 133–45 (2015)CrossRef
10.
Zurück zum Zitat Remme, E.W., Young, A.A., Augenstein, K.F., Cowan, B., Hunter, P.J.: Extraction and quantification of left ventricular deformation modes. IEEE Trans. Biomed. Eng. 51(11), 1923–1931 (2004)CrossRef Remme, E.W., Young, A.A., Augenstein, K.F., Cowan, B., Hunter, P.J.: Extraction and quantification of left ventricular deformation modes. IEEE Trans. Biomed. Eng. 51(11), 1923–1931 (2004)CrossRef
11.
Zurück zum Zitat Ardekani, S., et al.: Computational method for identifying and quantifying shape features of human left ventricular remodeling. Ann. Biomed. Eng. 37(6), 1043–54 (2009)CrossRef Ardekani, S., et al.: Computational method for identifying and quantifying shape features of human left ventricular remodeling. Ann. Biomed. Eng. 37(6), 1043–54 (2009)CrossRef
12.
Zurück zum Zitat Zhang, X., et al.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS One 9(10), e110243 (2014)CrossRef Zhang, X., et al.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS One 9(10), e110243 (2014)CrossRef
13.
Zurück zum Zitat Suinesiaputra, A., et al.: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge. IEEE J. Biomed. Health Inform. 22(2), 503–515 (2017)CrossRef Suinesiaputra, A., et al.: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge. IEEE J. Biomed. Health Inform. 22(2), 503–515 (2017)CrossRef
14.
Zurück zum Zitat Zhang, X., et al.: Orthogonal decomposition of left ventricular remodeling in myocardial infarction. GigaScience 6(3), 1–5 (2017)CrossRef Zhang, X., et al.: Orthogonal decomposition of left ventricular remodeling in myocardial infarction. GigaScience 6(3), 1–5 (2017)CrossRef
15.
Zurück zum Zitat Shakeri, M., Lombaert, H., Tripathi, S., Kadoury, S.: Deep spectral-based shape features for Alzheimer’s disease classification. In: Reuter, M., Wachinger, C., Lombaert, H. (eds.) SeSAMI 2016. LNCS, vol. 10126, pp. 15–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51237-2_2. Alzheimers Disease NeuroimagingCrossRef Shakeri, M., Lombaert, H., Tripathi, S., Kadoury, S.: Deep spectral-based shape features for Alzheimer’s disease classification. In: Reuter, M., Wachinger, C., Lombaert, H. (eds.) SeSAMI 2016. LNCS, vol. 10126, pp. 15–24. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-51237-2_​2. Alzheimers Disease NeuroimagingCrossRef
16.
Zurück zum Zitat Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRef Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRef
17.
Zurück zum Zitat Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–96 (2003)CrossRef Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–96 (2003)CrossRef
18.
Zurück zum Zitat Desai, M.Y., Ommen, S.R., McKenna, W.J., Lever, H.M., Elliott, P.M.: Imaging phenotype versus genotype in hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 4(2), 156–168 (2011)CrossRef Desai, M.Y., Ommen, S.R., McKenna, W.J., Lever, H.M., Elliott, P.M.: Imaging phenotype versus genotype in hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 4(2), 156–168 (2011)CrossRef
Metadaten
Titel
Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling
verfasst von
Carlo Biffi
Ozan Oktay
Giacomo Tarroni
Wenjia Bai
Antonio De Marvao
Georgia Doumou
Martin Rajchl
Reem Bedair
Sanjay Prasad
Stuart Cook
Declan O’Regan
Daniel Rueckert
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00934-2_52