Skip to main content

2021 | OriginalPaper | Buchkapitel

Learning to Predict Error for MRI Reconstruction

verfasst von : Shi Hu, Nicola Pezzotti, Max Welling

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In healthcare applications, predictive uncertainty has been used to assess predictive accuracy. In this paper, we demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error by decomposing the latter into random and systematic errors, and showing that the former is equivalent to the variance of the random error. In addition, we observe that current methods unnecessarily compromise performance by modifying the model and training loss to estimate the target and uncertainty jointly. We show that estimating them separately without modifications improves performance. Following this, we propose a novel method that estimates the target labels and magnitude of the prediction error in two steps. We demonstrate this method on a large-scale MRI reconstruction task, and achieve significantly better results than the state-of-the-art uncertainty estimation methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
4
The high standard deviations (SD) are due to high image noise (we note that most prior works on this dataset do not report SD, including [30]).
 
Literatur
2.
Zurück zum Zitat Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989)MathSciNetCrossRef Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989)MathSciNetCrossRef
3.
Zurück zum Zitat Davenport, T., Kalakota, R.: The potential for artificial intelligence in healthcare. Future Healthc. J. 6, 94 (2019)CrossRef Davenport, T., Kalakota, R.: The potential for artificial intelligence in healthcare. Future Healthc. J. 6, 94 (2019)CrossRef
4.
Zurück zum Zitat Depeweg, S., Hernández-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In: ICML (2018) Depeweg, S., Hernández-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In: ICML (2018)
5.
Zurück zum Zitat Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016) Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)
6.
Zurück zum Zitat Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATH
7.
Zurück zum Zitat Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015) Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)
8.
Zurück zum Zitat Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML (2017) Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML (2017)
11.
Zurück zum Zitat Joint Committee for Guides in Metrology: JCGM 100:2008. evaluation of measurement data - guide to the expression of uncertainty in measurement. Technical report (2008) Joint Committee for Guides in Metrology: JCGM 100:2008. evaluation of measurement data - guide to the expression of uncertainty in measurement. Technical report (2008)
12.
Zurück zum Zitat Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS (2017) Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS (2017)
13.
Zurück zum Zitat Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425–464 (2001) Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425–464 (2001)
14.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
15.
Zurück zum Zitat Kiureghian, A.D., Ditlevsen, O.: Aleatory or epistemic? does it matter? Struct. Saf. 31, 105–112 (2009)CrossRef Kiureghian, A.D., Ditlevsen, O.: Aleatory or epistemic? does it matter? Struct. Saf. 31, 105–112 (2009)CrossRef
17.
Zurück zum Zitat Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: ICML (2018) Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: ICML (2018)
18.
Zurück zum Zitat Kwon, Y., Won, J.H., Kim, B.J., Paik, M.C.: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation. Comput. Stat. Data Anal. 142 (2019). Article no. 106816 Kwon, Y., Won, J.H., Kim, B.J., Paik, M.C.: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation. Comput. Stat. Data Anal. 142 (2019). Article no. 106816
19.
Zurück zum Zitat Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS (2017) Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS (2017)
20.
Zurück zum Zitat Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: IEEE International Conference on Neural Networks (1994) Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: IEEE International Conference on Neural Networks (1994)
21.
Zurück zum Zitat Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: NeurIPS (2019) Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: NeurIPS (2019)
22.
Zurück zum Zitat Pezzotti, N., et al.: An adaptive intelligence algorithm for undersampled knee MRI reconstruction. IEEE Access 8, 204825–204838 (2020)CrossRef Pezzotti, N., et al.: An adaptive intelligence algorithm for undersampled knee MRI reconstruction. IEEE Access 8, 204825–204838 (2020)CrossRef
25.
Zurück zum Zitat Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016) Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)
26.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15, 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15, 1929–1958 (2014)MathSciNetMATH
27.
28.
Zurück zum Zitat Valindria, V.V., et al.: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans. Med. Imaging 36, 1597–1606 (2017)CrossRef Valindria, V.V., et al.: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans. Med. Imaging 36, 1597–1606 (2017)CrossRef
29.
Zurück zum Zitat Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)CrossRef Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)CrossRef
Metadaten
Titel
Learning to Predict Error for MRI Reconstruction
verfasst von
Shi Hu
Nicola Pezzotti
Max Welling
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87199-4_57