Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 2/2019

01.03.2019

LES Simulation of Heat Transfer in a Turbulent Pipe Flow with Lead Coolant at Different Reynolds Numbers

verfasst von: K. M. Sergeenko, V. M. Goloviznin, V. Yu. Glotov

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper numerically simulates turbulent heat transfer in a round pipe in a wide range of Reynolds numbers using the CABARET nonparametric MILES method on grids with an incomplete resolution of the turbulence spectrum and the STAR-CCM+ CFD code in the LES approximation. The calculation results are compared with the DNS calculations of other authors found in the literature and with the RANS calculations implemented in the STAR-CCM+ CFD code. The simulation showed a satisfactory accuracy in determining the mean, root-mean-square, and integral characteristics of the flow; and it allowed us to identify the shortcomings of the existing model relations describing local turbulence characteristics. The authors propose a thermal wall function implemented in the RANS approximations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. V. Garbaruk, M. Kh. Strelets, and M. L. Shur, Simulation of Turbulence in the Calculations of Complex Flows (Politekh. Univ., St. Petersburg, 2012) [in Russian]. A. V. Garbaruk, M. Kh. Strelets, and M. L. Shur, Simulation of Turbulence in the Calculations of Complex Flows (Politekh. Univ., St. Petersburg, 2012) [in Russian].
2.
Zurück zum Zitat G. Grotzbach and L. N. Carteciano, “Validation of turbulence models in the computer code FLUTAN for free hot sodium jet in different buoyancy flow regimes,” FZKA 6600 (Forschugsz. Karlsruhe, Karlsruhe, 2003). G. Grotzbach and L. N. Carteciano, “Validation of turbulence models in the computer code FLUTAN for free hot sodium jet in different buoyancy flow regimes,” FZKA 6600 (Forschugsz. Karlsruhe, Karlsruhe, 2003).
3.
Zurück zum Zitat J. Wolters, Benchmark Activity on the TEFLU Sodium Jet Experiment (Forschungszentrum Jülich, FZJ, 2002). J. Wolters, Benchmark Activity on the TEFLU Sodium Jet Experiment (Forschungszentrum Jülich, FZJ, 2002).
4.
Zurück zum Zitat E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow (Cambridge Univ. Press, Cambridge, 2001).MATH E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow (Cambridge Univ. Press, Cambridge, 2001).MATH
5.
Zurück zum Zitat F. F. Grinstein, L. G. Margolin, and W. J. Rider, Implicit Large Eddy Simulation (Cambridge Univ. Press, Cambridge, 2007).CrossRefMATH F. F. Grinstein, L. G. Margolin, and W. J. Rider, Implicit Large Eddy Simulation (Cambridge Univ. Press, Cambridge, 2007).CrossRefMATH
6.
Zurück zum Zitat J. P. Boris et al., “New insights into large eddy simulation,” Fluid Dyn. Res. 10, 199–228 (1992).CrossRef J. P. Boris et al., “New insights into large eddy simulation,” Fluid Dyn. Res. 10, 199–228 (1992).CrossRef
7.
Zurück zum Zitat V. M. Goloviznin et al., New Algorithms of Computational Hydrodynamics for Multi-Processor Computing Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian]. V. M. Goloviznin et al., New Algorithms of Computational Hydrodynamics for Multi-Processor Computing Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
8.
Zurück zum Zitat V. M. Goloviznin and S. A. Karabasov, “Nonlinear correction of Cabaret scheme,” Mat. Model. 10 (12), 107–123 (1998).MathSciNet V. M. Goloviznin and S. A. Karabasov, “Nonlinear correction of Cabaret scheme,” Mat. Model. 10 (12), 107–123 (1998).MathSciNet
9.
Zurück zum Zitat F. Nicoud and F. Ducros, “Subgrid-scale stress modelling based on the square of the velocity gradient tensor Flow,” Turbulence Combust. 62, 183–200 (1999).CrossRefMATH F. Nicoud and F. Ducros, “Subgrid-scale stress modelling based on the square of the velocity gradient tensor Flow,” Turbulence Combust. 62, 183–200 (1999).CrossRefMATH
10.
Zurück zum Zitat T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A new k-ε eddy viscosity model for high Reynolds number turbulent flows-model development and Validation,” Comput. Fluids 24, 227–238 (1995).CrossRefMATH T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A new k-ε eddy viscosity model for high Reynolds number turbulent flows-model development and Validation,” Comput. Fluids 24, 227–238 (1995).CrossRefMATH
11.
Zurück zum Zitat User Guide. Star-CCM+, Version 10.02, CD-adapco (2015). User Guide. Star-CCM+, Version 10.02, CD-adapco (2015).
12.
Zurück zum Zitat B. van Leer, “Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method,” J. Comput. Phys. 32, 101–136 (1979).CrossRefMATH B. van Leer, “Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method,” J. Comput. Phys. 32, 101–136 (1979).CrossRefMATH
13.
Zurück zum Zitat G. K. E. Khoury et al., “Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers,” Flow Turbulence Combust. 91, 475-495 (2013).CrossRef G. K. E. Khoury et al., “Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers,” Flow Turbulence Combust. 91, 475-495 (2013).CrossRef
14.
Zurück zum Zitat D. Anderson, D. Tannekhill, and R. Pletcher, Computation Fluid Mechanics and Heat Transfer (CRC, Boca Raton, FL, 2012), p. 774. D. Anderson, D. Tannekhill, and R. Pletcher, Computation Fluid Mechanics and Heat Transfer (CRC, Boca Raton, FL, 2012), p. 774.
15.
Zurück zum Zitat E. Baglietto, “Applied computation fluid dynamics and heat transfer,” Lecture No. 20 (NSE, MIT, 2016). E. Baglietto, “Applied computation fluid dynamics and heat transfer,” Lecture No. 20 (NSE, MIT, 2016).
16.
Zurück zum Zitat V. I. Subbotin and P. A. Ushakov, “Heat transfer during the flow of liquid metals in pipes,” Inzh.-Fiz. Zh. 6 (4), 16–20 (1963). V. I. Subbotin and P. A. Ushakov, “Heat transfer during the flow of liquid metals in pipes,” Inzh.-Fiz. Zh. 6 (4), 16–20 (1963).
17.
Zurück zum Zitat P. L. Kirillov, Yu. S. Yurev, and V. P. Bobkov, Handbook of Heat-Hydraulic Calculations (Nuclear Reactors, Heat Exchangers, Steam Generators) (Energoatomizdat, Moscow, 1990) [in Russian]. P. L. Kirillov, Yu. S. Yurev, and V. P. Bobkov, Handbook of Heat-Hydraulic Calculations (Nuclear Reactors, Heat Exchangers, Steam Generators) (Energoatomizdat, Moscow, 1990) [in Russian].
18.
Zurück zum Zitat G. Grotzbach, “Challenges in low-Prandtl number heat transfer simulation and modelling,” Nucl. Eng. Des. 264, 41–55 (2013).CrossRef G. Grotzbach, “Challenges in low-Prandtl number heat transfer simulation and modelling,” Nucl. Eng. Des. 264, 41–55 (2013).CrossRef
19.
Zurück zum Zitat A. I. Groshev and V. I. Slobodchuk, “Influence of the turbulent Prandtl number on heat transfer in pipes,” IPPE-1463 (Inst. Phys. Power Eng., Obninsk, 1983). A. I. Groshev and V. I. Slobodchuk, “Influence of the turbulent Prandtl number on heat transfer in pipes,” IPPE-1463 (Inst. Phys. Power Eng., Obninsk, 1983).
Metadaten
Titel
LES Simulation of Heat Transfer in a Turbulent Pipe Flow with Lead Coolant at Different Reynolds Numbers
verfasst von
K. M. Sergeenko
V. M. Goloviznin
V. Yu. Glotov
Publikationsdatum
01.03.2019
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 2/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219020157

Weitere Artikel der Ausgabe 2/2019

Mathematical Models and Computer Simulations 2/2019 Zur Ausgabe

Premium Partner