Skip to main content

2015 | OriginalPaper | Buchkapitel

Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in \(({\mathbf {k}},{\mathbf {q}})\)-Space

verfasst von : Jiaqi Sun, Elham Sakhaee, Alireza Entezari, Baba C. Vemuri

Erschienen in: Information Processing in Medical Imaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Compressed Sensing (CS) for the acceleration of MR scans has been widely investigated in the past decade. Lately, considerable progress has been made in achieving similar speed ups in acquiring multi-shell high angular resolution diffusion imaging (MS-HARDI) scans. Existing approaches in this context were primarily concerned with sparse reconstruction of the diffusion MR signal \(S({\mathbf {q}})\) in the \({\mathbf {q}}\)-space. More recently, methods have been developed to apply the compressed sensing framework to the 6-dimensional joint \(({\mathbf {k}},{\mathbf {q}})\)-space, thereby exploiting the redundancy in this 6D space. To guarantee accurate reconstruction from partial MS-HARDI data, the key ingredients of compressed sensing that need to be brought together are: (1) the function to be reconstructed needs to have a sparse representation, and (2) the data for reconstruction ought to be acquired in the dual domain (i.e., incoherent sensing) and (3) the reconstruction process involves a (convex) optimization.
In this paper, we present a novel approach that uses partial Fourier sensing in the 6D space of \(({\mathbf {k}},{\mathbf {q}})\) for the reconstruction of \(P({\mathbf {x}},{\mathbf {r}})\). The distinct feature of our approach is a sparsity model that leverages surfacelets in conjunction with total variation for the joint sparse representation of \(P({\mathbf {x}}, {\mathbf {r}})\). Thus, our method stands to benefit from the practical guarantees for accurate reconstruction from partial \(({\mathbf {k}},{\mathbf {q}})\)-space data. Further, we demonstrate significant savings in acquisition time over diffusion spectral imaging (DSI) which is commonly used as the benchmark for comparisons in reported literature. To demonstrate the benefits of this approach, we present several synthetic and real data examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press, Oxford (1991) Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press, Oxford (1991)
2.
Zurück zum Zitat Tuch, D.S.: Q-ball imaging. Mag. Res. Med. (MRM) 52, 1358–1372 (2004)CrossRef Tuch, D.S.: Q-ball imaging. Mag. Res. Med. (MRM) 52, 1358–1372 (2004)CrossRef
3.
Zurück zum Zitat Ugurbil, K., Xu, J., et al.: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project. NeuroImage 80, 80–104 (2013). Mapping the ConnectomeCrossRef Ugurbil, K., Xu, J., et al.: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project. NeuroImage 80, 80–104 (2013). Mapping the ConnectomeCrossRef
4.
Zurück zum Zitat Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Mag. Res. Med. (MRM) 58, 1182–1195 (2007)CrossRef Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Mag. Res. Med. (MRM) 58, 1182–1195 (2007)CrossRef
5.
Zurück zum Zitat Landman, B.A., Wan, H., Bogovic, J., van Zijl, P., Bazin, P.L., Prince, J.: Accelerated compressed sensing of diffusion-inferred intra-voxel structure through adaptive refinement. In: ISMRM (2010) Landman, B.A., Wan, H., Bogovic, J., van Zijl, P., Bazin, P.L., Prince, J.: Accelerated compressed sensing of diffusion-inferred intra-voxel structure through adaptive refinement. In: ISMRM (2010)
6.
Zurück zum Zitat Lee, N., Singh, M.: Compressed sensing based DSI. In: ISMRM (2010) Lee, N., Singh, M.: Compressed sensing based DSI. In: ISMRM (2010)
7.
Zurück zum Zitat Menzel, M., Khare, K., King, K.F., Tao, X., Hardy, C.J., Marinelli, L.: Accelerated DSI in the human brain using compressed sensing. In: ISMRM (2010) Menzel, M., Khare, K., King, K.F., Tao, X., Hardy, C.J., Marinelli, L.: Accelerated DSI in the human brain using compressed sensing. In: ISMRM (2010)
8.
Zurück zum Zitat Merlet, S.L., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Image Anal. 17, 556–572 (2013)CrossRef Merlet, S.L., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Image Anal. 17, 556–572 (2013)CrossRef
9.
Zurück zum Zitat Merlet, S., Caruyer, E., Deriche, R.: Parametric dictionary learning for modeling EAP and ODF in diffusion MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 10–17. Springer, Heidelberg (2012) CrossRef Merlet, S., Caruyer, E., Deriche, R.: Parametric dictionary learning for modeling EAP and ODF in diffusion MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 10–17. Springer, Heidelberg (2012) CrossRef
10.
Zurück zum Zitat Michailovich, O.V., Rathi, Y., Dolui, S.: Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Trans. Med. Imaging 30, 1100–1115 (2011)CrossRef Michailovich, O.V., Rathi, Y., Dolui, S.: Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Trans. Med. Imaging 30, 1100–1115 (2011)CrossRef
11.
Zurück zum Zitat Mani, M., Jacob, M., Guidon, A., Magnotta, V., Zhong, J.: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data. Mag. Res. Med. (MRM) 73, 126–138 (2015)CrossRef Mani, M., Jacob, M., Guidon, A., Magnotta, V., Zhong, J.: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data. Mag. Res. Med. (MRM) 73, 126–138 (2015)CrossRef
12.
Zurück zum Zitat Cheng, J., Shen, D., Yap, P.T.: Joint k-q space compressed sensing for accelerated multi-shell acquisition and reconstruction of the diffusion signal and ensemble average propagator. In: ISMRM, p. 664 (2014) Cheng, J., Shen, D., Yap, P.T.: Joint k-q space compressed sensing for accelerated multi-shell acquisition and reconstruction of the diffusion signal and ensemble average propagator. In: ISMRM, p. 664 (2014)
14.
Zurück zum Zitat Candès, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425 (2006)MATHCrossRef Candès, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425 (2006)MATHCrossRef
15.
Zurück zum Zitat Do, M.N., Vetterli, M.: Image denoising using orthonormal finite ridgelet transform. In: International Symposium on Optical Science and Technology, pp. 831–842. International Society of Optics and Photonics (2000) Do, M.N., Vetterli, M.: Image denoising using orthonormal finite ridgelet transform. In: International Symposium on Optical Science and Technology, pp. 831–842. International Society of Optics and Photonics (2000)
16.
Zurück zum Zitat Ying, L., Demanet, L., Candes, E.: 3D discrete curvelet transform. In: Optics & Photonics 2005, pp. 591413–591413. International Society of Optics and Photonics (2005) Ying, L., Demanet, L., Candes, E.: 3D discrete curvelet transform. In: Optics & Photonics 2005, pp. 591413–591413. International Society of Optics and Photonics (2005)
17.
Zurück zum Zitat Lu, Y.M., Do, M.N.: Multidimensional directional filter banks and surfacelets. IEEE Trans. Image Process. 16, 918–931 (2007)MathSciNetCrossRef Lu, Y.M., Do, M.N.: Multidimensional directional filter banks and surfacelets. IEEE Trans. Image Process. 16, 918–931 (2007)MathSciNetCrossRef
18.
Zurück zum Zitat Xu, X., Sakhaee, E., Entezari, A.: Volumetric data reduction in a compressed sensing framework. Comput. Graph. Forum (CGF) 33, 111–120 (2014). Special Issue on EuroVISCrossRef Xu, X., Sakhaee, E., Entezari, A.: Volumetric data reduction in a compressed sensing framework. Comput. Graph. Forum (CGF) 33, 111–120 (2014). Special Issue on EuroVISCrossRef
19.
20.
Zurück zum Zitat Willett, R.M.: Smooth sampling trajectories for sparse recovery in MRI. In: Proceedings of the 8th International Symposium on Biomedical Imaging, ISBI 2011, Chicago, Illinois, USA, pp. 1044–1047, 30 March – 2 April 2011 Willett, R.M.: Smooth sampling trajectories for sparse recovery in MRI. In: Proceedings of the 8th International Symposium on Biomedical Imaging, ISBI 2011, Chicago, Illinois, USA, pp. 1044–1047, 30 March – 2 April 2011
Metadaten
Titel
Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in -Space
verfasst von
Jiaqi Sun
Elham Sakhaee
Alireza Entezari
Baba C. Vemuri
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-19992-4_29

Premium Partner