Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 9/2015

01.09.2015 | ROADWAYS AND INFRASTRUCTURE

Life cycle environmental impact assessment of a bridge with different strengthening schemes

verfasst von: Bo Pang, Pengchao Yang, Yuanfeng Wang, Alissa Kendall, Huibing Xie, Yurong Zhang

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

A large number of highway bridges have been constructed in China since 1980s. Most of the aging bridges are in need of strengthening, which will lead to consuming big amounts of material and energy resources, producing air emissions and solid waste. This paper made a life cycle assessment for a highway bridge with four different strengthening plans by using Eco-indicator 99 to figure a total environmental impact score of the bridge.

Methods

Based on analyzing the life cycle assessment (LCA) investigations of bridges, the adopted LCA method for the highway bridge tracks materials and energy resources through the various stages of the bridge life cycle including production, transportation, construction, strengthening, and demolition, considering the impact of vehicle detours during strengthening construction, to calculate environmental impact for ecosystem quality, human health, energy, and resources. This is done for four strengthening schemes, which are traditionally compared based only on the basis of economic cost. In order to account for the variability of critical input variables, a Monte Carlo simulation was performed to estimate the variability of environmental scores associated with the transportation distance, the average fuel consumption for each vehicle, detouring distance, the structure closure period, and maintenance times. Ten thousand iterations were conducted based on previous studies.

Results and discussion

The analysis shows that the maintenance phase alone contributes about 66 % of the total environmental impact (including detouring stage 50 %, repaving bridge deck 12 %, strengthening 4 %), followed by material production stage (approximately 40 %). Of the four strengthening plans, plan 1 and plan 3 have relatively greater contributions in terms of environmental damage while the cost budgets are much lower. On the contrary, plan 2 and plan 4 have lower environmental burdens but cost much more. Sensitivity analysis shows that the damage to resources and ecosystem quality are more sensitive to the variation of parameters.

Conclusions

A life cycle assessment for a highway bridge in China with four different strengthening plans is conducted by using Eco-indicator 99 to figure a total environmental impact score of the bridge. It determines that the maintenance phase contributes the most to the environment deterioration. This study also shows that the energy consumptions and pollutant emissions related to traffic disruption during maintenance operations should not be excluded. Regarding the strengthening plans, it can be concluded that the environmental impact of bonding carbon fiber-reinforced polymer is fewer than that of bonding steel plates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bare JC, Hofstetter P, Pennington DW, Udo de Haes HA (2000) Midpoints versus endpoints: The sacrifices and benefits. Int J LCA 5(6):319–326 Bare JC, Hofstetter P, Pennington DW, Udo de Haes HA (2000) Midpoints versus endpoints: The sacrifices and benefits. Int J LCA 5(6):319–326
Zurück zum Zitat Bilec M, Ries R, Matthews HS, Sharrard AL (2006) Example of a hybrid life-cycle assessment of construction processes. J Infrast Syst 12(4):207–215CrossRef Bilec M, Ries R, Matthews HS, Sharrard AL (2006) Example of a hybrid life-cycle assessment of construction processes. J Infrast Syst 12(4):207–215CrossRef
Zurück zum Zitat Bouhaya L, Le Roy R, Feraille Fresnet A (2009) Simplified environmental study on innovative bridge structure. Environ Sci Technol 43(6):2066–2071CrossRef Bouhaya L, Le Roy R, Feraille Fresnet A (2009) Simplified environmental study on innovative bridge structure. Environ Sci Technol 43(6):2066–2071CrossRef
Zurück zum Zitat Chris TH, Lester BL, Scott H (2006) Environmental life cycle assessment of goods and services, resources for the future, the United States of America Chris TH, Lester BL, Scott H (2006) Environmental life cycle assessment of goods and services, resources for the future, the United States of America
Zurück zum Zitat Collings D (2006) An environmental comparison of bridge forms. Proceedings of the Institution of Civil Engineers. J Bridge Eng 159(4):163–168 Collings D (2006) An environmental comparison of bridge forms. Proceedings of the Institution of Civil Engineers. J Bridge Eng 159(4):163–168
Zurück zum Zitat Du G, Karoumi R (2012) Life cycle assessment of a railway bridge: comparison of two superstructure designs. Struct Infrastruct Eng 9(11):1149–1160CrossRef Du G, Karoumi R (2012) Life cycle assessment of a railway bridge: comparison of two superstructure designs. Struct Infrastruct Eng 9(11):1149–1160CrossRef
Zurück zum Zitat Du G, Karoumi R (2014) Life cycle assessment framework for railway bridges: literature survey and critical issues. Struct Infrastruct Eng 10(3):277–294CrossRef Du G, Karoumi R (2014) Life cycle assessment framework for railway bridges: literature survey and critical issues. Struct Infrastruct Eng 10(3):277–294CrossRef
Zurück zum Zitat Frangopol DM, Lin KY, Estes AC (1997) Life-cycle cost design of deteriorating structures. J Struct Eng 123(10):1390–1401CrossRef Frangopol DM, Lin KY, Estes AC (1997) Life-cycle cost design of deteriorating structures. J Struct Eng 123(10):1390–1401CrossRef
Zurück zum Zitat Gervásio H, Da Silva LS (2008) Comparative life cycle analysis of steel-concrete composite bridges. Struct Infrastruct Eng 4(4):251–269CrossRef Gervásio H, Da Silva LS (2008) Comparative life cycle analysis of steel-concrete composite bridges. Struct Infrastruct Eng 4(4):251–269CrossRef
Zurück zum Zitat Goedkoop M, Spriensma R (2000) The Eco-indicator 99: a damage oriented method for life cycle impact assessment—methodology report. Available at: www.pre.nl Goedkoop M, Spriensma R (2000) The Eco-indicator 99: a damage oriented method for life cycle impact assessment—methodology report. Available at: www.​pre.​nl
Zurück zum Zitat Gu LJ, Lin BR, Gu DJ, Zhu YX (2008) End-point model for life cycle impact assessment of Chinese building. Sci China 53(15):1858–1863 Gu LJ, Lin BR, Gu DJ, Zhu YX (2008) End-point model for life cycle impact assessment of Chinese building. Sci China 53(15):1858–1863
Zurück zum Zitat Hammervold J, Reenaas M, Brattebø H (2009) Environmental effects-life cycle assessment of bridges. SubProject 2 (SP2), ETSI Project (Stage 2), Norwegian University of Science and Technology, Norway Hammervold J, Reenaas M, Brattebø H (2009) Environmental effects-life cycle assessment of bridges. SubProject 2 (SP2), ETSI Project (Stage 2), Norwegian University of Science and Technology, Norway
Zurück zum Zitat Hammervold J, Reenaas M, Brattebø H (2013) Environmental life cycle assessment of bridges. J Bridg Eng 18(2):153–161CrossRef Hammervold J, Reenaas M, Brattebø H (2013) Environmental life cycle assessment of bridges. J Bridg Eng 18(2):153–161CrossRef
Zurück zum Zitat Hendrickson CT, Horvath A (2000) Resource use and environmental emissions of US construction sectors. J Constr Eng Manag 126(1):38–44CrossRef Hendrickson CT, Horvath A (2000) Resource use and environmental emissions of US construction sectors. J Constr Eng Manag 126(1):38–44CrossRef
Zurück zum Zitat Horvath A, Hendrickson C (1998) Steel versus steel-reinforced concrete bridges: environmental assessment. J Infrastruct Syst 4(3):111–117CrossRef Horvath A, Hendrickson C (1998) Steel versus steel-reinforced concrete bridges: environmental assessment. J Infrastruct Syst 4(3):111–117CrossRef
Zurück zum Zitat ISO:14040 (2006) Environmental management–life cycle assessment–principles and framework. ISO-International Organization for Standardization ISO:14040 (2006) Environmental management–life cycle assessment–principles and framework. ISO-International Organization for Standardization
Zurück zum Zitat ISO:14044 (2006) Environmental management–life cycle assessment–requirements and guidelines. ISO-International Organization for Standardization ISO:14044 (2006) Environmental management–life cycle assessment–requirements and guidelines. ISO-International Organization for Standardization
Zurück zum Zitat Itoh Y, Kitagawa T (2003) Using CO2 emission quantities in bridge life cycle analysis. Eng Struct 25(5):565–577CrossRef Itoh Y, Kitagawa T (2003) Using CO2 emission quantities in bridge life cycle analysis. Eng Struct 25(5):565–577CrossRef
Zurück zum Zitat Jönsson Å, Tillman AM, Svensson T (1997) Life cycle assessment of flooring materials: case study. Build Environ 32(3):245–255 Jönsson Å, Tillman AM, Svensson T (1997) Life cycle assessment of flooring materials: case study. Build Environ 32(3):245–255
Zurück zum Zitat JTG D62 (2004) Code for design of highway reinforced concrete and prestressed concrete bridges and culverts. Ministry of Transport of the People’s Republic of China JTG D62 (2004) Code for design of highway reinforced concrete and prestressed concrete bridges and culverts. Ministry of Transport of the People’s Republic of China
Zurück zum Zitat JTG/T J22 (2008) Specifications for strengthening design of highway bridges. Ministry of Transport of the People’s Republic of China JTG/T J22 (2008) Specifications for strengthening design of highway bridges. Ministry of Transport of the People’s Republic of China
Zurück zum Zitat Keoleian GA, Kendall A, Dettling JE, Smith VM, Chandler RF, Lepech MD, Li VC (2005) Life cycle modelling of concrete bridge design: comparison of engineered cementitious composite link slabs and conventional steel expansion joints. J Infrastruct Syst 11(1):51–60CrossRef Keoleian GA, Kendall A, Dettling JE, Smith VM, Chandler RF, Lepech MD, Li VC (2005) Life cycle modelling of concrete bridge design: comparison of engineered cementitious composite link slabs and conventional steel expansion joints. J Infrastruct Syst 11(1):51–60CrossRef
Zurück zum Zitat Kucukvar M, Tatari O (2013) Towards a triple bottom-line sustainability assessment of the US construction industry. Int J Life Cycle Assess 18(5):958–972CrossRef Kucukvar M, Tatari O (2013) Towards a triple bottom-line sustainability assessment of the US construction industry. Int J Life Cycle Assess 18(5):958–972CrossRef
Zurück zum Zitat Lounis Z, Daigle L (2007) Environmental benefits of life cycle design of concrete bridges. Proceedings of the 3rd International Conference on Life Cycle Management, Zurich, Switzerland, August 27-29, 2007, pp 1–6 Lounis Z, Daigle L (2007) Environmental benefits of life cycle design of concrete bridges. Proceedings of the 3rd International Conference on Life Cycle Management, Zurich, Switzerland, August 27-29, 2007, pp 1–6
Zurück zum Zitat Martin AJ (2004) Concrete bridges in sustainable development. Proceeding of the Institution of Civil Engineers. Engineering Sustainability 157(4):219-230 Martin AJ (2004) Concrete bridges in sustainable development. Proceeding of the Institution of Civil Engineers. Engineering Sustainability 157(4):219-230
Zurück zum Zitat Medgar L (2007) Life cycle inventory of Portland cement concrete. Portland Cement Association, Skokie, Illinois Medgar L (2007) Life cycle inventory of Portland cement concrete. Portland Cement Association, Skokie, Illinois
Zurück zum Zitat Melanta S, Miller-Hooks E, Avetisyan HG (2013) Carbon footprint estimation tool for transportation construction projects. J Constr Eng Manag 139(5):547–555CrossRef Melanta S, Miller-Hooks E, Avetisyan HG (2013) Carbon footprint estimation tool for transportation construction projects. J Constr Eng Manag 139(5):547–555CrossRef
Zurück zum Zitat Meng Y, Lu B (2004) Strengthening and reinforcing of bridges. China Communications Press, Beijing (in Chinese) Meng Y, Lu B (2004) Strengthening and reinforcing of bridges. China Communications Press, Beijing (in Chinese)
Zurück zum Zitat Ministry of Transport of the People’s Republic of China (2006) Design specification for highway alignment. China Communications Press, Beijing, JTG-D20-2006 (in Chinese) Ministry of Transport of the People’s Republic of China (2006) Design specification for highway alignment. China Communications Press, Beijing, JTG-D20-2006 (in Chinese)
Zurück zum Zitat National Development Reform Commission (2011) Yearbook of China—transportation and communication. Chinese Transportation Year Book Press, Beijing (in Chinese) National Development Reform Commission (2011) Yearbook of China—transportation and communication. Chinese Transportation Year Book Press, Beijing (in Chinese)
Zurück zum Zitat Noori M, Tatari O, Nam B, Golestani B, Greene J (2014) Astochastic optimization approach for the selection of reflective cracking mitigation techniques. Transp Res A 69:367–378 Noori M, Tatari O, Nam B, Golestani B, Greene J (2014) Astochastic optimization approach for the selection of reflective cracking mitigation techniques. Transp Res A 69:367–378
Zurück zum Zitat Onat NC, Kucukvar M, Tatari O (2014) Scope-based carbon footprint analysis of US residential and commercial buildings: an input–output hybrid life cycle assessment approach. Build Environ 72:53–62CrossRef Onat NC, Kucukvar M, Tatari O (2014) Scope-based carbon footprint analysis of US residential and commercial buildings: an input–output hybrid life cycle assessment approach. Build Environ 72:53–62CrossRef
Zurück zum Zitat SETAC (1993) Guidelines for life-cycle assessment: a “code of practice”. Society of Environmental Toxicology and Chemistry, Brussels SETAC (1993) Guidelines for life-cycle assessment: a “code of practice”. Society of Environmental Toxicology and Chemistry, Brussels
Zurück zum Zitat Sharrard AL, Matthews HS, Ries RJ (2005) Estimating construction project environmental effects using an input–output-based hybrid life-cycle assessment model. J Infrastruct Syst 14(4):327–336CrossRef Sharrard AL, Matthews HS, Ries RJ (2005) Estimating construction project environmental effects using an input–output-based hybrid life-cycle assessment model. J Infrastruct Syst 14(4):327–336CrossRef
Zurück zum Zitat Steele K, Cole G, Parke G, Clarke B, Harding J (2003) Highway bridges and environment-sustainable perspectives. Proc Inst Civ Eng 156(4):176–182 Steele K, Cole G, Parke G, Clarke B, Harding J (2003) Highway bridges and environment-sustainable perspectives. Proc Inst Civ Eng 156(4):176–182
Zurück zum Zitat Stensvold B (2003) MOTIV Kostnadsmodell for drift og vedlikehold av bruer og ferjekaier. The Norwegian Public Roads Administration, Oslo Stensvold B (2003) MOTIV Kostnadsmodell for drift og vedlikehold av bruer og ferjekaier. The Norwegian Public Roads Administration, Oslo
Zurück zum Zitat Suh S (2004) Materials and energy flows in industry and ecosystem networks. Leiden University, Leiden Suh S (2004) Materials and energy flows in industry and ecosystem networks. Leiden University, Leiden
Zurück zum Zitat Sustainability Assessment Standards of Construction Engineering (2012) China Architecture and Building Press, Beijing, China: JGJ/T 222-2012 (in Chinese) Sustainability Assessment Standards of Construction Engineering (2012) China Architecture and Building Press, Beijing, China: JGJ/T 222-2012 (in Chinese)
Zurück zum Zitat Tatari O, Nazzal M, Kucukvar M (2012) Comparative sustainability assessment of warm-mix asphalts: a thermodynamic based hybrid life cycle analysis. Resour Conserv Recycl 58:18–24CrossRef Tatari O, Nazzal M, Kucukvar M (2012) Comparative sustainability assessment of warm-mix asphalts: a thermodynamic based hybrid life cycle analysis. Resour Conserv Recycl 58:18–24CrossRef
Zurück zum Zitat Wu WJ (2013) Sustainability quantitative assessment of reinforced concrete bridges based on uncertainties. Beijing Jiaotong University, Beijing (in Chinese) Wu WJ (2013) Sustainability quantitative assessment of reinforced concrete bridges based on uncertainties. Beijing Jiaotong University, Beijing (in Chinese)
Zurück zum Zitat Wu XG, Bai QX, Lei ZX (2011) Highway bridges reinforcement design calculation example. China Communications Press, Beijing (in Chinese) Wu XG, Bai QX, Lei ZX (2011) Highway bridges reinforcement design calculation example. China Communications Press, Beijing (in Chinese)
Zurück zum Zitat Yang XM (2003) Quantitative assessment theory and method of environmental impact in construction planning and design. Tsinghua University, Beijing (in Chinese) Yang XM (2003) Quantitative assessment theory and method of environmental impact in construction planning and design. Tsinghua University, Beijing (in Chinese)
Zurück zum Zitat Yang PC (2013) Life cycle environmental impact assessment of bridge with different strengthening methods. Beijing Jiaotong University, Beijing (in Chinese) Yang PC (2013) Life cycle environmental impact assessment of bridge with different strengthening methods. Beijing Jiaotong University, Beijing (in Chinese)
Zurück zum Zitat Yang JX, Xu C, Wang RS (2002) Life cycle methodology and application of production. China Meteorological Press, Beijing, China (in Chinese) Yang JX, Xu C, Wang RS (2002) Life cycle methodology and application of production. China Meteorological Press, Beijing, China (in Chinese)
Zurück zum Zitat Zhang QY (2008a) Life cycle assessment of green buildings. Tianjin Technology University, Tianjin (in Chinese) Zhang QY (2008a) Life cycle assessment of green buildings. Tianjin Technology University, Tianjin (in Chinese)
Zurück zum Zitat Zhang Y (2008b) Ecologically based LCA—an approach for quantifying the role of natural capital in product life cycles. The Ohio State University, the United States of America Zhang Y (2008b) Ecologically based LCA—an approach for quantifying the role of natural capital in product life cycles. The Ohio State University, the United States of America
Zurück zum Zitat Zhang H, Lepech MD, Keoleian GA, Qian S, Li VC (2010) Dynamic life-cycle modeling of pavement overlay systems: capturing the impacts of users, construction, and roadway deterioration. J Infrastruct Syst 16(4):299–309CrossRef Zhang H, Lepech MD, Keoleian GA, Qian S, Li VC (2010) Dynamic life-cycle modeling of pavement overlay systems: capturing the impacts of users, construction, and roadway deterioration. J Infrastruct Syst 16(4):299–309CrossRef
Metadaten
Titel
Life cycle environmental impact assessment of a bridge with different strengthening schemes
verfasst von
Bo Pang
Pengchao Yang
Yuanfeng Wang
Alissa Kendall
Huibing Xie
Yurong Zhang
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 9/2015
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-015-0936-1

Weitere Artikel der Ausgabe 9/2015

The International Journal of Life Cycle Assessment 9/2015 Zur Ausgabe